

Gruppo Termomeccanica

INNOVATION AND COMPETENCE

IN WEE DESIGN and CONSTRUCTION

Gruppo Termomeccanica

- The Company
- Contracts actually in progress
- TM.E philosophy
- Furnace
- Boiler
- Flue Gas Treatment
- Heat Recovery System

TERMOMECCANICA GROUP

KEY NUMBERS

Turnover 2017: 215 M€

EBIT 2017: 7 M€

STAFF 2017: Head Office 357 units O&M 316 units

Certifications:

TM.E. – THE COMPANY

THE ACTIVITIES

TM.E. S.p.A. is the Company, certified by UNI EN ISO/9001/2000, ISO/14001/2004, OHSAS 18001 and SA 8000 standards, of the Termomeccanica Group, specialized in the design, construction and management of environmental and industrial engineering works, developing its activities as follows:

Energy & Waste

- Waste to energy plants
- Biogas energy recovery plants
- Waste sorting plants
- RDF and compost production
 plants
- Energy from biomass

Renewable Energies

• Wind farms

Water Treatment

- Drinking water production plants
- Desalination plants
- Remineralization plants
- ION Exchange Water Treatment Plants (Demineralization and condensate treatment processes)
- Industrial waste water treatment plants
- Municipal waste water treatment plants

Sludge treatment

- Dewatering
- Drying
- Combustion
- Inertization
- Solidification

TM.E. – ENERGY & WASTE DIVISION

TM.E. S.p.A. has proprietary technologies for grate stoker, rotary kiln and fluidized bed for waste incineration and can use dry, semi dry and wet flue gas cleaning systems, all resulting in a highly efficient treatment process. TME is also a licensee of Kawasaki Heavy Industries for the construction of large capacity Waste to Energy grate plants.

Combustion

Moving stoker Grate (Air and/or water cooled)

Rotary kiln

Fluidised bed

Flue gas cleaning systems

Dry systems (lime, sodium bicarbonate)

Semi dry/wet systems (lime)

Wet systems (sodium hydroxide)

WASTE TO ENERGY PLANT Gdansk (Poland)

- Customer: ZUT
- Throughput: 160.000 tonnes/year
- Plant Type: 1 line, moving grate
- Energy Recovery: 15 Mwe

40 MWth

Flue Gas Treatment: Semi Dry and Wet
 + SNCR

WASTE TO ENERGY PLANT Beringen (Belgium)

- Customer: Bionerga
- Throughput: 200.000 tonnes/year
- Plant Type: 1 line, moving grate
- Energy Recovery:
 - 24 Mwe
- Flue Gas Treatment: Dry + SCR

COMPLETION OF THE WASTE TO ENERGY PLANT Szczecin (POLAND)

- Customer: ZUO Szczecin
- Throughput: 150.000 tonnes/year
- Plant Type: 2 lines, moving grate
- Energy Recovery:
 - 13 Mwe
- Flue Gas Treatment: semi Dry

Rotary Kiln Incinerator for Takreer Refinery (Abu Dhabi)

 Customer: Intecsa Industrial (Spain) for Takreer Refinery (Abu Dhabi)

- Throughput: 24.000 tonnes/year
- Plant Type: 1 line, rotary kiln
- Energy Recovery: 37 MWth
- Flue Gas Treatment: Dry

WASTE TO ENERGY PLANT RZESZÒW (POLAND)

- Customer: PGE
- Throughput: 100.000 tonnes/year
- Plant Type: 1 lines, moving grate
- Energy Recovery:
 - 8 Mwe
 - 17 MWth
- Flue Gas Treatment: semi Dry

Gruppo Termomeccanica

INDEX

TM.E philosophy

- Furnace
- Boiler
- Flue Gas Treatment
- Heat Recovery System
- 3D video of San Vittore Plant

1111

TM.E. philosophy Key success factors for BAT selection

Safety

Reliability

Energy Efficiency

Bref / BAT selection Oriented to Improve...

Flexibility

Air cleaning Efficiency

Operational -Investment costs TM.E member of:

ESWET

European Suppliers of Waste to Energy Technology Association

12

TM.E philosophy

TM.E innovative approach for WtE design

CFD technique for improvement of

- Combustion technology
- Flue gas treatment technology

Thermoflow technique for improvement of

- Energy Recovery technology
- In order to define the maximum efficiency operating condition

Advanced Automatic System Controls for

- Combustion (ACC) (patent)
 - (patent)
- **Energy Recovery**

FGT

In order to operate in the maximum efficiency point

TM.E philosophy

TM.E. bases the design upon the parameters requested by the Client and own experiences:

1. Furnace technology:

Air / Water cooled grate, cooperation by

2. Boiler technology:

Vertical / Horizontal tail, cooperation by

TM.E. S.p.A. - Termomeccanica Ecologia Gruppo Termomeccanica

3. Flue gas treatment technology: SCR / SNCR + Semi-Dry / Dry / Wet combination system

TM.E. S.p.A. - Termomeccanica Ecologia

ruppo Termomeccanica

Gruppo Termomeccanica

INDEX

TM.E philosophy

- Furnace
- Boiler
- Flue Gas Treatment
- Thermal Cycle
- 3D video of San Vittore Plant

//////

TME – Incineration plant of San Vittore del Lazio

Design Furnace Data Typical CD RDF waste: San Vittore Project

Continous operating field:

- Thermal load:
- Throughput:
- Calorific value:
- 52 100 % 53 - 100 %
- 10 20 MJ/kg

Bydgoszcz Project: MSW waste

Gruppo Termomeccanica

Design Furnace Data

Grate technology: Air-cooled / Water-cooled moving grate

Field design of the furnace system:

- Throughput : 2 35 t/h
- Thermal load: 10 110 MWth
- Calorific value: 6 20 MJ/kg
- Waste type:
- Availability:

- RDF, MSW, industrial waste, sludge, biomass, etc..
- 8.000 8.400 operating hours / year

CFD Technic

Combustion chamber advanced design

TM.E uses a CFD modeller to improve the combustion technology:

- Optimization of secondary air and flue gas recirculation injection in order to:
 - create a good turbolence in the combustion chamber
 - control the combustion temperature
 - control the oxigen distribution in the injection area

Gruppo Termomeccanica

Combustion chamber advanced design

Gruppo Termomeccanica

CFD Technic

Combustion chamber advanced design

TM.E uses a CFD modeller to improve the combustion technology:
 Verification of the respect of the law in force as regards the post combustion temperature

Temperature profile and oxigen concentration in the section that correspond to minimun residence time of 2 sec after the last injection of air

Gruppo Termomeccanica

Furnace

Water cooled grate?

Problems observed in several installation: waste with C.V. > 12 MJ/kg:

- Grate bar shorter lifetime;
- Uncontrolled gaps between grate bars and middle beams;
- Un-uniform burning over the cross section of grate;
- Sifting problems;
- Metallic deposits on grate bars;
- Combustion control/air distribution poor;
- High wearing/sintering for refractory;
- Un-uniform gas streams in boiler;
- High dust formation;
- CO-peaks, NO-peaks;

Gruppo Termomeccanica

Furnace

Gruppo Termomeccanica

Furnace

One-track design

Slope zone: 6° (1 & 2) – 0° (3)

Gruppo Termomeccanica

Furnace

Main assets of Revi-Tec water cooled grate

- Low inclination of the grate: better control of waste distribution
- Low thickness of the waste: better quality of the combustion
- Shape of grate bar: better wear resistance and self cleaning
- No middle beams internal in the grate: no wear internal zones
- No gaps: better control of waste distribution, minimization of "low-melting metals", better wear resistance of the grate bars
- Water cooling circuit: uniform cooling of the grate bars surface, no steam formation and no water leakage
- No water fittings positioned underneath: no problems for "low-melting metals" deposits, maintenance during operation
 REVI 26

Gruppo Termomeccanica

Furnace

Key success factors of the Revi-Tec technology

Major advantages for Revi Tec technology using a water cooled grate system can be seen in the following parts:

- grate bar elements
- water cooling system
- 1-track design of grate
- drive system outside of grate
- grate side expansion system

As a result, the following economic advantages can be mentioned:

- high availability and reliability of the grate system
- Iow maintenance/repair/service costs
- excellent combustion control and energy distribution
- Iow emission values, high bottom ash quality

OPERATION AND PERFORMANCE -MAINTENANCE

Thermal load: 58 MWth Grate dimension: 6,9 m x 9,6 m Calorific value: about 15 MJ/kg

no replacements in 4 years no failure tax of the furnace vs operational hours of plant

Grate bars life time: over 6 years

ticknesswear.15%

acea ambiente

Gruppo Termomeccanica

Furnace

Automatic Combustion Control (ACC)

An automatic combustion control (ACC) have been developed and patented

since 2004. Design merged from several plant installed.

Patented Closed-loop - ACC

Commissioning, Set up and optimization of the ACC by SAR – TM.E team

Furnace design - Performance of ACC

ACC system results in Europe WtE plant (average daily values):

- Average CO level Emission : < 10 (mg/Nm3, 11%O2 drygas)
- Fluctuations of Steam flow from set-point required: < 2%

1%

• Unburned in the slag (%C):

TM.E Patent

Tested with different mix of waste:

- MSW
- RDF
- Biomass
- Sludge
- Sanitary

Fluctuations % of the combustion parameters from set-point

TM.E. S.p.A. - Termomeccanica Ecologia Gruppo Termomeccanica

Improvement of the Environmental performance

Environmental performance achieved:

Performance test	San Vittore del Lazio	Bydgoszcz
Thermal Capacity (MWth)	58 MWth	27,2 MWth
Fluctuation from Steam Set- point	< 1%	< 1,5%
Daily average value CO - Stack (mg/Nm3, dry gas 11%O2)	< 5	< 15
Unburned (TOC) in the slag (%)	< 1%	0,2%

Gruppo Termomeccanica

INDEX

TM.E philosophy

- Furnace
- Boiler
- Flue Gas Treatment
- Heat Recovery System
- 3D video of San Vittore Plant

1111

Gruppo Termomeccanica

Boiler

Key success factors

Several experiences in WtE plant for TM.E and Wehrle Werk in order to

minimize pollution, erosion and corrosion problems.

Best Technologies / Techniques used:

- Geometry / configuration of the steam boiler:
 - Boiler completely integrated in the combustion chamber;
 - CFD analysis in the first / second pass;
 - Boiler type: n° 2/ 3 vertical radiation empty passes and vertical / horizontal pass for installation of convective bundles

Gruppo Termomeccanica

Boiler

Key success factors

- Criteria design of the boiler:
- Superheated Steam pressure:

40 – 48 bar

- Superheated Steam temperature: 380 440°C
- Gas velocity in the convective part: < 5 m/s
- Flue gas temperature at the exit of first channel:
- Flue gas temperature at the inlet of first superheater: about 650 °C
- Flue gas temperature at the exit of the boiler:

about 900°C

180–200 °C

Basic Design with

Horizontal Steam Boiler: Arrangement

Gruppo Termomeccanica San Vittore WtE Plant No. 3 vertical radiant evaporative flue gas passes

No 1 horizontal convective section:

No. 1 evaporative bundles

No. 4 superheater bundles

No. 3 Economizer bundles

Cleaning system:

Hammer technology

Steam conditions :

Membrane walls / SH material:

ASTM A210 A1 / ASTM A335 T11

T = 420 °C P = 44 bar abs

Cladding: top of 1st empty pass, 2nd empty pass and 1st SH are cladded with 35 Inconel 625 – 2 mm

Vertical Steam Boiler: Arrangement

Bydgoszcz WtE Plant

- No. 2 vertical radiant evaporative flue gas passes
- No 1 vertical convective section in 3° pass:
 - No. 1 evaporative bundles
 - No. 3 superheater bundles
 - No. 5 Economizer bundles
- Cleaning system:
 - Soot-blowing technology
 - T = 420 °C P = 45 bar abs
- Membrane walls / SH material:

 \geq

ASTM A210 A1 / ASTM A335 T11

Cladding: top of 1st empty pass, 2nd empty pass and 1st SH are cladded with Inconel 625 – 2 mm

Gruppo Termomeccanica

Refractory advanced design

TM.E uses a CFD modeller to improve the combustion technology: Choise of the best technology as regards the refractory lining of the ** furnace in order to assure the right heat exchange

Combustion chamber lined with SiC tiles

Post-combustion chamber lined with SiC tiles (considering the fouling of combustion chamber)

ANSYS

Combustion chamber lined with SiC tiles Post-combustion chamber lined with SiC castable (considering the fouling of combustion chamber)

Gruppo Termomeccanica

2

Ð.

:01

Boiler

Refractory System

8/(1

PART

20000

SIC	Position	Thickness
SIC Castable	1	100 mm
SIC Castable	2	65 mm
SIC Monolitic	5	50 mm
SIC Tiles	7	

/////

Standard 27 - 5 / 3-Rom Standard 33 - 5 / 3-Rohr

Gruppo Termomeccanica

-0 3 rh 🖻

Boiler

Refractory System

SIC	Position	Thickness
SIC Castable	3	65 mm

Self-flowing low cement materials Pannel 500 x 500 mm

Gruppo Termomeccanica

San Vittore WtE Plant

Refractory Performance

TOTAL SURFACE LINED:480 m²COMBUSTION CHAMBER:184 m²AFTER BURNING CHAMBER:290 m²

YEAR	LINE 2	LINE 3	
2011	/	/	
2012	26 m²	8 m²	
2013	8 m²	30 m²	
2014	17 m²	30 m²	
2015	22 m²	18 m²	
TOTAL m ²	73 m²	86 m²	
% REPAIR / 5 YEARS	15%	18%	

63m² lined with Mokesa tiles

NO INTERVENTIONS in

first 4 years

Gruppo Termomeccanica

INDEX

TM.E philosophy

- Furnace
- Boiler
- Flue Gas Treatment
- Heat Recovery System
- 3D video of San Vittore Plant

111

Gruppo Termomeccanica

Flue gas treatment

References in WtE Plant with Grate Technology

WtE Plant	Air Pollution Cleaning (APC)	Reagents
	Technology	
Casic	DeNOx SNCR	Urea Solution
Cagliari Nº1 line		Hydrated Lime
enginitititi	Semi-Dry + Wet method	Activated Carbon
	Semi-Diy + Wet memou	Soda Solution
Granarolo	DeNOx SCR	Ammonia Solution
Bologna N°2 lines		Hydrated Lime
	Semi-Drv + Wet method	Activated Carbon
	Semi-Dig + Wet method	Soda Solution
Valmadrera	DeNOx SNCR + SCR	Ammonia Solution
Lecco N°2 lines		Sodium Bicarbonate
	Drv + Wet method	Activated Carbon
	Dig i vice memou	Soda Solution
		Adiox packing
San Vittore del Lazio	DeNOx SCR	Ammonia Solution
N°3 lines		Sodium Bicarbonate
	Dry method	Activated Carbon
Bydgoszcz	DeNOx SNCR	Ammonia Solution
Nº2 lines		High reactivity hydtrated lime
	Somi Dwy + Wat mathad	Activated Carbon
	Semi-Dry + wet method	Soda Solution
Terceira	DeNOx SNCR	Urea Solution
Azores Island Nº1 line		Sodium Bicarbonate
AZULUS ISIANU IV I IMU	Dry method	Activated Carbon 42

Gruppo Termomeccanica

Air emission FGT performance

Pollutant (Concentration referred to dry gas, O ₂ 11% vol.)	Law values - daily average	Lecco Measured values (daily average)	Bologna Measured values (daily average)	San Vittore Measured values (daily average)
		Bicar Dry + wet FGT	Lime Semi-dry + wet FGT	Bicar Dry FGT
HCI	10 mg/Nm3	< 1 mg/Nm3	2 mg/Nm3	< 1 mg/Nm3
СО	50 mg/ Nm3	3,5 mg/ Nm3	10 mg/ Nm3	3 mg/ Nm3
$NO+NO_2$ as NO_2	200 mg/ Nm3	95 mg/ Nm3	90 mg/ Nm3	33,5 mg/ Nm3
$SO_2 + SO_3$ as SO_2	50 mg/ Nm3	2 mg/ Nm3	5 mg/ Nm3	0,5 mg/ Nm3
HF	1 mg/ Nm3	0,1 mg/ Nm3	0,1 mg/ Nm3	0,1 mg/ Nm3
TOC	10 mg/ Nm3	0,3 mg/ Nm3	0,4 mg/ Nm3	0,3 mg/ Nm3
Dust	10 mg/ Nm3	0,2 mg/ Nm3	0,9 mg/ Nm3	0,2 mg/ Nm3
Cd + Tl	0,05 mg/ Nm3	0,001 mg/ Nm3	0,002 mg/ Nm3	0,001 mg/ Nm3
Metals	0,5 mg/ Nm3	0,03 mg/ Nm3	0,05 mg/ Nm3	0,003 mg/ Nm3
Hg	0,05 mg/ Nm3	0,005 mg/ Nm3	0,005 mg/ Nm3	0,0015 mg/ Nm3
PAH	0,01 mg/ Nm3	0,0001 mg/ Nm3	0,0003 mg/ Nm3	0,0001 mg/ Nm3
PCDD+PCDF	0,1 ng/ Nm3	0,012 ng/ Nm3	0,008 ng/ Nm3	0,023 ng/ Nm3 ⁴³

FGT performance: Bydgoszcz

ProNatura Polonia - 8 hours Capacity test

Half Hour Report - STACK

		Hydr Chloride	Carbon Monox	Nitrogen Oxides	Sulphur Dioxide	Hydr Fluoride	Total Org Carb	Dust
Date	Time	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3	mg/Nm3
Daily average	IED 2010/75 EU	10,0	50,0	200,0	50,0	1,0	10,0	10,0
Daily average	Guaranteed values	5,0	25,0	80,0	20,0	0,5	5,0	4,0
average		0,87	11,08	64,48	2,98	0,37	0,57	0,33

11/1

Advanced Automation & Control (TM.E patent) 45

Gas Acid Neutralization: Philosophy of Multi Reagents Control

Gruppo Termomeccanica

INDEX

- TM.E philosophy
- Furnace
- Boiler
- Flue Gas Treatment
- Heat Recovery System
- Residues

3D video of San Vittore Plant

1111

Gruppo Termomeccanica

Heat Recovery system

TM.E uses a calculation and simulator software, Thermoflow, in order to:

- Elaborate materials and thermals balance
- Verify the correct design of the equipments
- Define the best configuration of the steam/water cycle
- Optimize the overall efficiency of the plant

48

Energy Performance

San Vittore del Lazio (FR) Plant	Guaranteed values	Checked values	Increase	% increase
Total efficiency of the plant	24.00 %	27.13 %	+ 3.13 %	+ 11.54 %
Electric energy production	14.50 MWh	15.24 MWh	+ 0.74 MWh	+ 5.4 %

Bydgoszcz Plant	Guaranteed values	Checked values	Increase
Gross electric power generated (full condensation mode)	13 MWe	13,4 MWe	+ 3%
Gross electric power generated (district heating mode): 27,7 MWth produced	9,2 MWe	9,6 MWe	+ 4,3%

Gruppo Termomeccanica

Availability of San Vittore Plant

Year	Line 2 + Line 3
2012	15755 h
2013	16087 h
2014	16180 h
2015	16680 h
2016	16405 h

Average operational hour per line during 5 years: ~ 8111 h per year

WE DIVISION: MAIN PATENTS

1. Multi Stage Dry Flue Gas Treatment (MSD)

IT patent since 2016

EU pending 2017

2. ACC (Automatic Combustion Control)

IT patent since 2015 EU patent since 2017

3. Municipal Sludge Treatment System (Drying and Incineration)

IT patent since 2014 EU pending 2016

4. Furnaces

patent since 2011

5. Flue Gas Treatment ZEP (Zero Emission Process)

patent since 2002

"Creativity is the skill to move from abstract to a concrete solution idea... ...the skill to solve problems and create new ways to drive the market ..."

Termomeccanica Ecologia

Termomeccanica Group

TM.E. S.p.A. - Termomeccanica Ecologia Via del Molo 1/B - 19126 La Spezia – Italy Tel. +39 0187 552.1 - Fax. +39 0187 552.215

www.tme.termomeccanica.com

Thank you for your attention