Le buone pratiche e gli strumenti operativi individuati dai progetti TOPPS
La prevenzione dell’inquinamento, in particolare delle acque, da agrofarmaci: le buone pratiche e gli strumenti operativi individuati dai progetti TOPPS
L’INQUINAMENTO DIFFUSO DA AGROFARMACI ... 96

La deriva generata dalla macchina irroratrice... 96
Le misure di mitigazione .. 97
Le linee guida TOPPS Prowadis ... 98
L’attuale scarso livello di armonizzazione fra gli Stati dell’Unione Europea 98
Uno schema europeo per Buone Pratiche comuni ... 99
Buone Pratiche – Processo di consultazione ... 99
Struttura delle Buone Pratiche (BMP) ... 100
Misure generali (valide sia per le barre irroratrici che per gli atomizzatori) 102
Misure per ridurre la deriva generata dalle barre irroratrici 136
Misure per ridurre la deriva generata dagli atomizzatori 139
Ulteriori indicazioni per ridurre la deriva generata dalle barre irroratrici 149
Ulteriori indicazioni per ridurre la deriva generata dagli atomizzatori........... 156

LA VALUTAZIONE DEL RISCHIO DERIVA: DRIFT EVALUATION TOOL ... 161

LA SOSTENIBILITA’ AMBIENTALE DELLE IRRORATRICI: “IL PROGETTO TOPPS-EOS” ... 166

Il software EOS .. 166
Come funziona EOS ... 169
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicazione di EOS alla realtà italiana</td>
<td>173</td>
</tr>
<tr>
<td>Il futuro di EOS</td>
<td>175</td>
</tr>
<tr>
<td>GLOSSARIO</td>
<td>177</td>
</tr>
<tr>
<td>BIBLIOGRAFIA</td>
<td>194</td>
</tr>
<tr>
<td>Legislazione Europea</td>
<td>194</td>
</tr>
<tr>
<td>Legislazione italiana</td>
<td>195</td>
</tr>
<tr>
<td>Norme EN e ISO (le più rilevanti)</td>
<td>200</td>
</tr>
<tr>
<td>Altri riferimenti bibliografici</td>
<td>202</td>
</tr>
</tbody>
</table>
I PROGETTI TOPPS

TOPPS è l’acronimo di Train Operators to Promote Practices & Sustainability (www.topps-life.org; www.topps.unito.it). I progetti TOPPS hanno avuto inizio nel 2005, sono tuttora in corso di svolgimento e sono stati finanziati dall’ECPA (associazione europea dei produttori di agrofarmaci) con l’obiettivo di prevenire l’inquinamento, in particolare dei corsi d’acqua, da agrofarmaci. Tali forme d’inquinamento possono essere di tipo puntiforme o diffuso (Fig. 1).

L’inquinamento di tipo puntiforme è principalmente dovuto alla non corretta manipolazione degli agrofarmaci nelle fasi di trasporto e stoccaggio delle confezioni, di riempimento dell’irroratrice, di lavaggio della stessa al termine del trattamento nonché di smaltimento dei residui di miscela fitostratifica inutilizzata e dei contenitori di agrofarmaci vuoti. L’inquinamento di tipo diffuso, legato alla fase di distribuzione vera e propria, è principalmente riconducibile al fenomeno della deriva del prodotto fitostratifico al di fuori dell’apezzamento trattato ed al ruscellamento della frazione di prodotto chimico finito a terra verso i corsi d’acqua superficiali, riscontrabile più frequentemente in appezzamenti declivi e soggetti a fenomeni di erosione del terreno.

In particolare, il primo progetto TOPPS ha avuto una durata triennale (2005-2008), è stato finanziato dall’Unione Europea (Life) e si è occupato della prevenzione dell’inquinamento puntiforme delle acque da agrofarmaci. Il Progetto complessivamente è stato condotto in 15 Paesi suddivisi in 4 macro-aree o clusters:
- South-cluster (Italia, Francia del sud, Spagna e Portogallo) coordinato dall’Università di Torino
- Mid West-cluster (Germania, Gran Bretagna, Francia del nord, Belgio, Paesi Bassi)
- Nordic-cluster (Svezia, Finlandia, Danimarca)

Fig. 1 - Stima dell’incidenza delle diverse forme di inquinamento delle acque superficiali da prodotti fitosanitari (da M. Roettle, 2012).
Oltre all’Università degli Studi di Torino, al Progetto hanno partecipato in particolare:

- PCF-Diensten aan bedrijven vzw/npo & POVLT (Belgio)
- Landwirtschaftskammer Nordrhein-Westfalen (Germania)
- Danish Agricultural Advisory Service & Hardi International (Danimarca)
- Universitat Politecnica de Catalunya /CEIB. (Spagna)
- Cemagref & Arvalis (Francia)
- Research Institute of Pomology and Floriculture & Institute Land Reclamation and Grassland Farming (Polonia)
- Harper Adams University College (Gran Bretagna)

Nell’ambito del Progetto TOPPS sono state definite delle Buone Pratiche Agricole (BMP) da adottare e divulgare per contenere l’inquinamento puntiforme da agrofarmaci.

Sulla scorta delle informazioni acquisite nell’ambito di TOPPS ed allargando l’orizzonte anche agli aspetti legati ai fenomeni di inquinamento diffuso (ruscellamento e deriva del prodotto fitoattivo), un gruppo di esperti europei, integrato con alcuni costruttori di macchine irroratrici e produttori di agrofarmaci, grazie al supporto finanziario dell’ECPA, ha studiato e realizzato un software denominato EOS (Environmentally Optimised Sprayer) con l’obiettivo di fornire uno strumento informatico in grado di valutare la compatibilità ambientale delle macchine irroratrici in funzione dei dispositivi tecnici presenti o che possono essere installati sulle stesse. Lo sviluppo del software EOS è iniziato nel Gennaio 2010 e si è concluso nella primavera del 2011. Le diverse fasi del progetto sono state coordinate dal gruppo di supporto tecnico costituito dall’Università di Torino (Italia), dal Julius Kühn Institut di Braunschweig (Germania) e dall’InHort, Research Institute of Horticulture, di Skierniewice (Polonia). Oltre ai sopracitati enti di ricerca, ai progetto hanno attivamente partecipato:

- Universitat Politecnica Catalunya (UPC), Barcellona, Spagna
- Provinciaal Onderzoeks-en Vorlichtingscentrum voor Land-en Tuinbouw (POVLT), Rumbekte, Belgio
- Institut Français de la Vigne et du Vin, Davaye, Francia
- Landwirtschaftskammer NRW, Münster, Germania
- Danish Agricultural Advisory Service (DAAS), Aarhus, Danimarca
- Visavis, Vellinge, Svezia
- BetterDecisions, Project management, Dülmen, Germania
- ARAG, Rubiera, Italia
- Caffini, Verona, Italia
- Amazone, Hasberge, Germania
- BASF, Limburgerhof, Germania
- Bayer CropScience, Monheim, Germania
- Syngenta, Basel, Svizzera.
Il progetto TOPPS-Prowadis, che si sviluppa nel triennio 2011-2014, prosegue la serie dei progetti TOPPS ed è finalizzato alla prevenzione e riduzione dell’inquinamento diffuso (deriva e ruscellamento) da agrofarmaci. Il progetto TOPPS-Prowadis coinvolge 14 partners e si svolge in 7 Paesi dell’Unione Europea, Tab. 1).

Tab. 1 – I partners del Progetto Topps Prowadis.

Nell’ambito del Progetto Topps-Prowadis è stato anche sviluppato un applicativo software “user friendly” (Drift Evaluation Tool) per la valutazione in tempo reale del rischio deriva in funzione delle condizioni operative (climatiche e ambientali), della componentistica presente sull’irroratrice e delle modalità operative adottate.

I progetti TOPPS hanno permesso di elaborare, insieme con gli esperti del settore e con i diversi soggetti coinvolti nella problematica dell’inquinamento ambientale da agrofarmaci, una serie di linee guida (BMP = Best Management Practices) per la buona pratica agricola. La divulgazione intensiva di tali linee guida attraverso specifiche attività formative, dimostrazioni pratiche e diversi canali di informazione è stata e viene tutt’ora effettuata in tutti i Paesi Europei coinvolti al fine di sensibilizzare gli agricoltori sul tema e di promuovere l’adozione di misure di protezione delle acque dalla contaminazione con agrofarmaci.

Si tratta di aspetti di grande importanza e attualità in quanto riportati anche nella Direttiva 2009/128 CE sull’Uso Sostenibile dei Prodotti Fitosanitari (articoli 11 e 13) e nel Piano di Aziona Nazionale (PAN) di attuazione della stessa.

In particolare, nell’allegato VI del PAN sono riportati gli obblighi che devono essere rispettati per una corretta manipolazione e un idoneo stoccaggio dei prodotti fitosanitari e per il trattamento dei relativi imballaggi e delle rimanenze al fine di minimizzare il rischio
di inquinamento puntiforme. Inoltre, nel paragrafo A.6.1 del PAN, per incrementare i livelli di sicurezza nelle fasi di manipolazione e stoccaggio dei prodotti fitosanitari, si indica che devono essere fornite delle “indicazioni che tengono conto, tra l’altro, della normativa in vigore, degli orientamenti e delle linee guida nazionali e regionali in materia e delle indicazioni tecniche scaturite dal progetto Europeo Life-TOPPS”.

Con riferimento alla deriva, all’interno del capitolo A.5 del PAN, si prevede che i Ministeri dell’Ambiente e delle Politiche Agricole predispongano, tra le altre, delle linee guida di indirizzo specifiche per individuare una serie di misure “volte a minimizzare i rischi associati alla deriva, al ruscellamento e alla percolazione”. Sulla base di tali linee guida “le Regioni e le Province Autonome prevedono opportuni strumenti per incentivare, nell’ambito della Politica agricola comune (PAC) e conformemente alle suddette linee guida, l’applicazione di tecniche e pratiche, volte al miglioramento della qualità ambientale ed alla protezione dell’ambiente acquatico dai fenomeni di inquinamento conseguenti alla deriva, al ruscellamento e alla lisciviazione dei prodotti fitosanitari. Nella definizione delle misure di mitigazione della deriva, volte a minimizzarla o ad impedirne gli effetti, possono essere utilizzati, tra gli altri, il documento prodotto dalla commissione consultiva per i prodotti fitosanitari “Misure di mitigazione del rischio per la riduzione della contaminazione dei corpi idrici superficiali da deriva e ruscellamento») e le indicazioni scaturite dal progetto TOPPS- Prowadis.”

Con la presente pubblicazione si è inteso riunire in unico libretto tutte le indicazioni sulle Buone pratiche da seguire per contenere l’inquinamento puntiforme e quello diffuso dovuto alla deriva generata dalle macchine irroratrici oltre che descrivere gli strumenti operativi messi a punto sempre nell’ambito dei progetti TOPPS.
L’INQUINAMENTO PUNTIFORME DA AGROFARMACI

INTRODUZIONE
Le sempre maggiori preoccupazioni circa i possibili effetti negativi legati alla distribuzione degli agrofarmaci, sia sulla qualità delle acque destinate all’impiego domestico, sia sulla salute degli organismi acquatici hanno portato l’Unione Europea ad emanare una specifica Direttiva (“Water Framework Directive”, 2000/60/EC).
Alcuni studi effettuati in Gran Bretagna e pubblicati dalla Crop Protection Association, hanno, infatti, evidenziato che circa il 50% della contaminazione delle acque superficiali è dovuta ad un non corretto utilizzo dei prodotti reflui del trattamento fitoietrico. In particolare, da tale studio è emerso che partendo da una dose di principio attivo di 2.5 kg/ha, in media 7 grammi di p.a. finiscono nelle acque di falda e che circa il 30% di tale quantitativo proviene dal lavaggio delle irroratrici. Tutto ciò a seguito del fatto che l’area adibita a questa operazione è, generalmente, sempre la medesima (Fig. 2) e risulta caratterizzata da una ridotta superficie (10-20 m²).

Fig. 2 – Lavaggio irroratrice e inquinamento puntiforme
Pertanto, al fine di ridurre ulteriormente i possibili rischi per l’uomo e per l’ambiente, gli agrofarmaci, in quanto farmaci per la cura delle colture, vanno impiegati quando servono e nelle quantità necessarie prevedendo una corretta e adeguata gestione di tutte le fasi operative, da quelle iniziali relative al trasporto, stoccaggio e preparazione della miscela a quelle finali di smaltimento dei prodotti residui del trattamento (Drummond, 1998; Mc Allan, 1998; Balsari e Marucco, 2001).
Queste forme di inquinamento puntiforme possono essere in gran parte evitate adottando opportuni accorgimenti tecnici ed infrastrutture adeguate.
Poche semplici regole di comportamento possono ridurre il fenomeno dell’inquinamento puntiforme da agrofarmaci. Essi, infatti, se manipolati correttamente non inquinano le acque. Operare correttamente nelle diverse fasi di manipolazione degli agrofarmaci è fondamentale per prevenire l’inquinamento puntiforme delle acque.

Proprio al fine di sensibilizzare gli agricoltori su questa problematica e di divulgare le necessarie corrette regole comportamentali, l’Unione Europea ha co-finanziato, nel 2005, il Progetto Life-TOPPS.

Il progetto Life-TOPPS ha previsto dei corsi di formazione e attività dimostrative mirate ad illustrare le tecniche e i dispositivi atti a contenere i fenomeni di inquinamento puntiforme da agrofarmaci presso 10 aziende pilota dislocate sul territorio europeo. In Italia tale attività è stata svolta presso l’azienda Fontanafredda (www.fontanafredda.it) di Serralunga d’Alba (CN).

Inoltre, in aree pilota selezionate all’interno dei diversi clusters (per l’Italia, il territorio dell’Albese) è stata effettuata una formazione intensiva degli agricoltori sul tema della prevenzione dell’inquinamento puntiforme da agrofarmaci e sono stati verificati i comportamenti, le attrezzature e le infrastrutture presenti nelle aziende all’inizio ed alla fine del progetto.

LE LINEE GUIDA TOPPS

LA GENESI

La genesi delle Linee Guida (BMP) ha seguito un percorso sequenziale al fine di assicurare il coinvolgimento del maggior numero possibile di esperti del settore:

- Prima bozza di linee guida proposta dal gruppo di lavoro TOPPS (Ottobre 2006)
- Discussione della bozza di linee guida TOPPS a livello nazionale con gli esperti del settore (stakeholders) e proposte di emendamento (Ottobre 2006 – fine 2007)
- Riunione del Comitato Direttivo TOPPS allargata ai rappresentanti degli stakeholders europei
- Workshop Europeo per la presentazione ufficiale delle linee guida agli stakeholders europei (Febbraio 2007)

LA STRUTTURA

Le linee guida sono strutturate secondo le fasi di gestione dell’agrofarmaco nell’azienda agricola. In particolare, sono state individuate sei fasi principali:

- trasporto
- stoccaggio
• prima di iniziare il trattamento
• durante l’esecuzione del trattamento
• al termine del trattamento
• gestione dei prodotti reflui

Ciascuna linea guida è costituita da:

a) un’indicazione sintetica = che cosa fare
b) una serie di specifiche tecniche = come fare per ottemperare all’indicazione sintetica

Le oltre 100 Linee Guida selezionate a livello europeo rappresentano quelle più importanti e condivise tra le circa 400 proposte nell’ambito del Progetto TOPPS.

Le indicazioni sintetiche rappresentano delle regole di comportamento indirizzi principalmente agli agricoltori. Le specifiche tecniche riportano una serie di dettagli utili per ottemperare a quanto previsto dalle indicazioni sintetiche e delle indicazioni che devono essere seguite solo quando a livello locale mancano delle specifiche normative in merito e sono indirizzate principalmente ai tecnici ed ai divulgatori.

Di seguito, anche avvalendosi di fotografie e schemi, vengono riportate sia le indicazioni sintetiche che le specifiche tecniche da seguire per garantire una migliore protezione delle acque dall’inquinamento da agrofarmaci. Per ciascuna fase di gestione dell’agrofarmaco vi è una breve introduzione generale.

In particolare le indicazioni sintetiche sono riportate in colore blu ed evidenziate in giallo e caratterizzate da un numero progressivo da 1 a 117, mentre le relative specifiche tecniche sono riportate in colore nero e stile corsivo.
LE LINEE GUIDA PER LA CORRETTA GESTIONE DEI PRODOTTI FITOSANITARI IN AZIENDA

FASE 1: TRASPORTO

Principi generali
- Prima di tutto la sicurezza dell’operatore;
- evitare perdite accidentali che possano contaminare il mezzo di trasporto;
- conoscere le procedure di emergenza;
- rispettare le normative vigenti in tema di trasporto di sostanze pericolose.

Il trasporto degli agrofarmaci dal rivenditore all’azienda, effettuato dall’agricoltore, è il primo di una serie di processi durante i quali possono verificarsi rischi di inquinamento puntiforme. In molti casi, correttamente, gli agricoltori si fanno consegnare direttamente i prodotti fitosanitari in azienda dai rivenditori/fornitori. Tuttavia, anche in questi casi, rimangono valide le indicazioni da seguire circa le operazioni di carico e scarico delle confezioni, la verifica dell’integrità degli imballaggi e la presenza delle etichette e delle schede di sicurezza. Questi sono, infatti, requisiti preliminari necessari per evitare fenomeni di contaminazione del magazzino degli agrofarmaci dovuti a perdite accidentali di prodotto e, in caso di emergenza, per conoscere le procedure da adottare.

Non è scopo delle Linee Guida TOPPS approfondire nei dettagli il tema del trasporto degli agrofarmaci, che riguarda più direttamente la catena di distribuzione ed i rivenditori di prodotti fitosanitari. Il trasporto delle sostanze pericolose è infatti un tema generale, non strettamente legato all’agricoltura, che è regolamentato dall’Accordo Europeo sul Trasporto Internazionale di Sostanze Pericolose su Strada (ADR, Ginevra 30 Settembre 1957) e dalle relative leggi vigenti a livello nazionale. In questa sezione si fa riferimento al trasporto degli agrofarmaci su strada, dal punto vendita al centro aziendale. Il trasporto dal centro aziendale al campo è trattato successivamente.

Per quanto riguarda il trasporto dei prodotti fitosanitari su strada, i principali requisiti sono:
- conoscere il quantitativo massimo di prodotto che può essere trasportato direttamente dall’agricoltore. Per questo fare riferimento al proprio rivenditore/fornitore;
- adottare tutte le precauzioni necessarie. Seguire diligentemente le indicazioni del rivenditore e/o quelle riportate sulle etichette dei prodotti fitosanitari;
- evitare perdite e gocciolamenti di prodotto all’interno del veicolo impiegato per il trasporto e nelle aree circostanti;
- utilizzare adeguati mezzi per il carico e lo scarico delle confezioni;
- essere preparati ad affrontare eventuali emergenze: agire prontamente ed in modo corretto riduce i rischi per la sicurezza personale e per l’ambiente.

PIANIFICAZIONE

1. Quando possibile, farsi consegnare direttamente gli agrofarmaci dal proprio rivenditore.
2. Trasportare gli agrofarmaci nei loro contenitori originali con le etichette integre e leggibili.

La maggior parte dei produttori di agrofarmaci utilizza sistemi di confezionamento approvati.

Nota: i singoli contenitori prelevati da un carico confezionato possono non essere conformi; controllare che i contenitori e le relative etichette con le modalità di impiego, siano originali.

DURANTE IL TRASPORTO

3. Avere con sé un elenco dei numeri di emergenza.
Disporre dei numeri di emergenza sull’unità di trasporto. I più importanti sono il 115 ed il 118 che consentono di allertare vigili del fuoco e pronto soccorso medico.

CARICO/SCARICO

Vedi l’indicazione riportata al punto 9.

5. Disporre i contenitori degli agrofarmaci integri, parzialmente utilizzati o vuoti ma non risciacquati, sempre con le chiusure rivolte verso l’alto.
Vedi anche l’indicazione 7: “Prima di partire, controllare sempre che il carico sia correttamente bilanciato e ben sistemato” e l’indicazione 80 “Risciacquare
immediatamente i contenitori di agrofarmaci vuoti ed i relativi tappi/linguette, aggiungendo l’acqua di lavaggio alla miscela fitoiatrica da distribuire”.

6. **Osservare sempre le indicazioni riportate sugli imballaggi (es. “alto”, “fragile”, ecc.).**

 Vedi anche l’indicazione 7

7. **Prima di partire, controllare sempre che il carico sia correttamente bilanciato e ben sistemato.**

 Mettere le confezioni più pesanti in basso.

 Evitare che i contenitori possano muoversi sul piano di carico.

 Evitare che i sistemi di fissaggio (ad esempio le cinghie) danneggino il contenitore primario

 I contenitori degli agrofarmaci integri, parzialmente utilizzati o vuoti ma non risciacquati devono essere disposti sempre con le chiusure rivolte verso l’alto.

 Osservare sempre le indicazioni riportate sugli imballaggi (es. “alto”, “fragile”, ecc.).

8. **Evitare di danneggiare gli imballaggi e le confezioni degli agrofarmaci durante le operazioni di carico e scarico.**

9. **Verificare sempre che gli imballaggi secondari (es. scatoloni di cartone, casse di legno) siano integri e che i pallets siano privi di sporgenze taglienti.**

 Vedi anche l’indicazione 4

10. **Dopo aver scaricato le confezioni di agrofarmaci, controllare sempre che non vi siano state perdite sul piano di carico del veicolo.**

 Vedi anche l indicazione 35 inerente la “gestione delle perdite”

11. **Dopo aver scaricato le confezioni di agrofarmaci, verificare sempre che siano intege prima di manipolarle.**

 Separare i contenitori danneggiati da quelli integri.

 Indossare indumenti protettivi e DPI come indicato nelle etichette e/o nelle schede di sicurezza dei prodotti (Fig. 3).

 Fig. 3 - E’ necessario manipolare i contenitori degli agrofarmaci indossando sempre adeguati dispositivi di protezione individuale.
Mettere i contenitori danneggiati in contenitori ermetici e tamponare le perdite con materiale assorbente.
Raccogliere il materiale contaminato e inserirlo nel contenitore ermetico con i contenitori danneggiati.
Vedi anche l’indicazione 35 inerente la “gestione delle perdite”.

TRASPORTO IN AZIENDA

12. **Evitare di trasportare grandi quantità di agrofarmaci**

Assicurarsi che i contenitori o gli alloggiamenti per gli agrofarmaci, montati sui veicoli o sui rimorchi adibiti al trasporto in azienda, siano ben chiusi (Fig. 4, Fig. 5 e Fig. 6). Tale trasporto interno all’azienda deve riguardare solo i prodotti prelevati dal locale di stoccaggio aziendale e deve, comunque, garantire un impiego dei prodotti prelevati entro le 24 ore. Ulteriori prescrizioni possono essere necessarie per i prodotti etichettati come “Tossici”, “Infiammabili” o “Corrosivi”.

Fig. 4 – Trasporto in sicurezza degli agrofarmaci in campo impiegando appositi alloggiamenti presenti sulla macchina irratatrice.
12

Fig. 5 – Trasporto degli agrofarmaci in campo in maniera sicura impiegando un contenitore chiuso all’interno di un furgone (foto Harper Adams).

Fig. 6 – Trasporto di un sacco di prodotto in polvere in maniera NON sicura.

13. **Durante il trasferimento dal centro aziendale al campo,** assicurarsi che il trattore, la macchina irroratrice e le confezioni degli agrofarmaci siano stabili.

Le irroratrici riempite con la miscela fitoiettrica o con l’agrofarmaco concentrato non devono manifestare alcuna perdita o gocciolamento che possa provocare rischi di inquinamento lungo il tragitto verso il campo da trattare. Il coperchio del serbatoio deve essere forato per permettere il passaggio dell’aria, ma deve impedire la fuoriuscita del liquido. Assicurarsi che l’irroratrice sia agganciata ed assicurata correttamente al trattore prima di muoversi. Assicurarsi che il serbatoio non possa subire danni dovuti alle vibrazioni lungo il percorso. Conoscere le procedure di emergenza. Assicurarsi che tutti i componenti dell’irroratrice (pre-miscelatore, tubazioni del circuito, ecc.) non presentino gocciolamenti.
o perdite. Zavorrare opportunamente il trattore e bilanciare il carico quando si impiega un’irroratrice di tipo portato ed evitare, se possibile, i percorsi molto accidentati.

14. **Assicurarsi che non si verifichino perdite accidentali di prodotto.**
Le irroratrici riempite con la miscela fitoiatrica o con l’agrofarmaco concentrato non devono manifestare alcuna perdita o gocciolamento che possa provocare rischi di inquinamento lungo il tragitto verso il campo da trattare (Fig. 7 e Fig. 8).

![Fig. 7 – Assicurarsi che non ci siano perdite di prodotto dall’irroratrice durante il trasferimento in campo (foto CMA).](image1)

![Fig. 8 – Il coperchio del serbatoio deve essere completamente chiuso ed impedire la fuoriuscita del liquido.](image2)

Assicurarsi che non vi siano perdite dalle tubazioni e dagli ugelli e che il serbatoio non sia troppo pieno. Chiudere tutte le valvole che alimentano gli ugelli. Verificare che tutte le valvole non possano essere azionate accidentalmente durante il trasporto. Assicurarsi che la scala di lettura del serbatoio sia presente e ben visibile dal posto guida e permetta di individuare situazioni di emergenza. Nel caso la scala di lettura non sia visibile dal posto...
guida o scarsamente leggibile (es. banda traslucida su serbatoi in vetroresina), rivolgersi ad una officina specializzata per individuare soluzioni alternative. Assicurarsi che tutte le valvole, i rubinetti ed i coperchi del serbatoio siano ben chiusi durante il trasporto. “Effettuare immediatamente gli interventi di riparazione che si rendano necessari sull’irrortatrice per evitare perdite, gocciolamenti, ecc.” (indicazione 85). Evitare di circolare su strada con la pompa azionata durante il tragitto dal punto di riempimento al campo da trattare. I prodotti che richiedono un’agitazione costante nel serbatoio dovrebbero preferibilmente essere immessi nell’irrortatrice in prossimità del campo da trattare (Fig. 9). Nel caso ciò non sia possibile, durante il tragitto mantenere la minima pressione di esercizio richiesta per garantire l’agitazione della miscela fitolettiva nel serbatoio.

15. **Se possibile, evitare di attraversare corsi d’acqua con la macchina irroratrice.**
Dove possibile, utilizzare ponti o sovrappassi. Se è inevitabile dover attraversare piccoli corsi d’acqua, pulire le ruote e controllare con particolare attenzione che non vi siano gocciolamenti o perdite dalla macchina irroratrice. Vedi anche l’indicazione 86 “Non irrorare su corsi d’acqua, pozzi, fontane, canali di scolo e superfici asfaltate” (tenere conto delle eccezioni, es. risaie allagate).

Fig. 9 - I prodotti che richiedono un’agitazione costante nel serbatoio dovrebbero preferibilmente essere immessi nell’irrortatrice in prossimità del campo da trattare (Foto Hardi International).
Fase 2: Stoccaggio

Principi generali:
- Prima di tutto la sicurezza dell’operatore;
- pianificare attentamente dove e come realizzare il proprio magazzino per lo stoccaggio degli agrofarmaci;
- gestire il magazzino quotidianamente e in modo appropriato;
- evitare perdite di prodotto e conoscere le procedure per gestirle correttamente nel caso si verifichino;
- non immettere mai direttamente il prodotto fuoriuscito accidentalmente nelle acque superficiali o nella rete fognaria;
- conoscere le procedure di emergenza.

Questa sezione concerne espressamente lo stoccaggio dei prodotti fitosanitari nell’azienda agricola e, poiché comprende le caratteristiche che deve avere il magazzino per la conservazione degli agrofarmaci, è collegata alle “infrastrutture” aziendali. Fortunatamente è molto raro che si verifichino gravi incidenti nei magazzini per lo stoccaggio dei prodotti fitosanitari, tuttavia quando si verificano le conseguenze possono essere gravi, sia per la salute dell’uomo che per la salvaguardia dell’ambiente. Inoltre, vi sono anche conseguenze legali che gravano sull’agricoltore. Gli incidenti legati ad un accesso indiscriminato da parte di chiunque al magazzino di stoccaggio dei prodotti fitosanitari sono un esempio ben noto.

Un aspetto meno conosciuto ma molto diffuso riguarda la presenza nel magazzino di scarichi collegati direttamente alla rete fognaria, attraverso i quali possono essere immesse nell’ambiente le perdite accidental di prodotto concentrato verificatesi all’interno del locale, così come le acque di lavaggio del pavimento del magazzino, che possono contenere residui di agrofarmaci. Si tratta in entrambi i casi di seri rischi di inquinamento puntiforme. È bene, pertanto, adottare opportuni provvedimenti,
impedendo che tali liquidi contaminati vengano immessi direttamente nell’ambiente ma siano, invece, raccolti a parte e, quindi, trattati convenientemente (vedi sezione gestione dei prodotti reflui del trattamento).

Quando si tratta di costruire una nuova struttura (Fig. 10) o di modificarne una già esistente è importante fare riferimento alla legislazione vigente ed ai criteri di sicurezza, ma anche tenere conto dell’utilizzo quotidiano e dei relativi rischi per l’ambiente. Alcuni sono contemplati nelle normative vigenti, altri sono piuttosto ovvi, ma altri ancora spesso non sono tenuti nella giusta considerazione.

Fig. 10 – Magazzino con armadi specifici per lo stoccaggio degli agrofarmaci.

Se vi sono diverse alternative possibili per l’ubicazione del magazzino per gli agrofarmaci, scegliere di realizzarlo in un’area non vulnerabile dal punto di vista ambientale; se ciò non è possibile, adottare tutte le precauzioni necessarie a limitare i potenziali rischi di inquinamento.

Fare in modo che la distanza tra il magazzino degli agrofarmaci e l’area dove avviene il riempimento dell’irrortatrice sia quanto più possibile ridotta, in modo che i rischi di sversamenti durante le fasi di manipolazione dei prodotti fitosanitari siano ridotti al minimo.

Conoscere in anticipo la quantità massima di prodotti fitosanitari che possono essere conservati nel magazzino e limitare lo stoccaggio al minimo indispensabile secondo le esigenze aziendali.

Il magazzino per i prodotti fitosanitari deve essere esclusivamente deputato allo stoccaggio degli agrofarmaci. Se le normative locali lo consentono, vi possono essere conservati anche i residui di miscela fitoiatrica inutilizzati, in attesa di smaltimento, ed i contenitori di agrofarmaci vuoti.
Evitare perdite e gocciolamenti; le operazioni necessarie per tamponarle e circoscriverle producono materiale contaminato che deve poi essere smaltito come rifiuto speciale (pericoloso).

Prendere le precauzioni necessarie ad evitare che fuoriuscite accidentali di prodotto possano raggiungere direttamente la rete fognaria o le acque superficiali.

Essere in grado di affrontare le situazioni di emergenza: agire prontamente ed in modo corretto riduce i rischi per la sicurezza personale e per l’ambiente.

UBICAZIONE DEL MAGAZZINO DEGLI AGROFARMACI

16. **Ubicare il magazzino degli agrofarmaci lontano dalle aree più sensibili all’inquinamento (poezi, corsi d’acqua superficiali) al fine di minimizzare i rischi.**

In generale i magazzini per gli agrofarmaci devono essere situati lontano dalle zone con elevato rischio di inquinamento delle acque e/o devono essere costruiti in modo da prevenire tali rischi. Verificare se esistono limitazioni in tal senso a livello locale e in questo caso chiedere il parere delle Autorità prima di costruire un nuovo magazzino.

A titolo di esempio, si riportano le distanze di riferimento dalle aree a rischio previste in alcuni Paesi europei (Belgio e Regno Unito): per i magazzini di nuova costruzione, dimensionati per la conservazione di oltre 1 tonnellata di agrofarmaci: 50 m se il magazzino non è dotato di speciali sistemi di prevenzione; 10 m se è garantito ignifugo per almeno un’ora.

Evitare di stoccare contemporaneamente elevati quantitativi di prodotti fitosanitari.

Per quantitativi stoccati superiori a 5 tonnellate fare riferimento alla normativa Seveso 3 (vedi Riferimenti Legislativi).

17. **I magazzini per gli agrofarmaci mobili oppure utilizzati temporaneamente devono essere posizionati lontano dalle aree più sensibili all’inquinamento.**

A titolo indicativo: I magazzini destinati alla conservazione di oltre 1 tonnellata di prodotti fitosanitari dovrebbero essere situati almeno a 50 m di distanza dalle aree sensibili (Fig. 11). I magazzini destinati alla conservazione di meno di 1 tonnellata di prodotti fitosanitari dovrebbero essere ubicati a: 20 m di distanza dalle aree molto sensibili all’inquinamento delle acque, a 10 m di distanza dalle aree mediamente sensibili e a 4 m di distanza dalle aree poco sensibili all’inquinamento delle acque, purché siano presenti adeguati sistemi per la raccolta delle acque contaminate (inclusa l’acqua utilizzata per lo spegnimento di eventuali incendi). Non ubicare i magazzini su pendii rivolti verso aree sensibili all’inquinamento. Disporre sempre di sistemi per la raccolta delle acque contaminate nel magazzino quando quest’ultimo è situato in prossimità di punti di captazione dell’acqua potabile.
In ogni caso i magazzini non dovranno mai essere ubicati nella zona di rispetto prevista intorno ai punti di captazione dell’acqua potabile (art.94 d.lgs. 152/06).

Fig. 11 – Distanza del magazzino degli agrofarmaci da un’area sensibile in funzione della capacità massima di stoccaggio.

18. Dotare il centro aziendale di un’area attrezzata per la preparazione della miscela ed il riempimento dell’irracciatrice; quest’area si deve trovare in prossimità del magazzino degli agrofarmaci (Fig. 12).

Fig. 12 – Il magazzino deve essere ubicato in prossimità dell’area attrezzata per il riempimento dell’irracciatrice.

Le confezioni di agrofarmaci prelevate dal magazzino devono essere tenute sempre in vista e non accessibili al personale non autorizzato. Le aree attrezzate devono consentire la raccolta dei versamenti accidentali di prodotto e devono essere dotate di dispositivi per la raccolta dei contenitori e degli imballaggi vuoti.
Ad esempio, l’area attrezzata può essere costituita da un battuto di cemento munito di un tombino collegato ad un serbatoio di raccolta dei reflui contaminati con agrofarmaci (Fig. 13); in alternativa può essere utilizzato un telo di plastica, che all’occorrenza può essere disposto al di sotto dell’irrortatrice durante la fase di riempimento; le eventuali perdite possono essere recuperate con un aspiraliquidi e reintrodotte immediatamente nell’irrortatrice, oppure possono essere stocate in appositi serbatoi, anche portatili (Fig. 14), e sottoposte, successivamente, ad un trattamento di bonifica.

Fig. 13 – Area attrezzata per preparazione della miscela e riempimento dell’irrortatrice (foto ARVALIS).

Fig. 14 – Telo plastico per il recupero delle eventuali perdite di prodotto registratesi durante la fase di preparazione della miscela fitoiatrica e loro stoccaggio in un serbatoio portatile.

ACCESSO AL MAGAZZINO DEGLI AGROFARMACI

19. **Non lasciare mai il magazzino degli agrofarmaci incustodito mentre è aperto.**
I magazzini devo essere sicuri, non devono essere lasciati incustoditi quando sono aperti e devono essere utilizzati da personale competente e designato.

20. **Stoccare gli agrofarmaci in locali oppure armadi chiusi a chiave (Fig. 15).**
Per quanto riguarda i locali deputati allo stoccaggio degli agrofarmaci, assicurarsi che l’accesso dall’esterno attraverso altre aperture (es. finestre) non sia possibile. Dotare la porta di una chiusura di sicurezza esterna, eventualmente con maniglia antipanico interna.

![Fig. 15 - Esempi di corretto stoccaggio dei contenitori di agrofarmaci.](image1)

21. Tenere bene in vista gli elenchi delle procedure di sicurezza e dei numeri di emergenza.

Le istruzioni per identificare le procedure di emergenza da attuare per ciascun tipo di agrofarmaco stoccato devono essere rese ben visibili sulle pareti in prossimità dell’entrata del magazzino, e disposte ad altezza uomo.

22. Apporre sempre i cartelli di pericolo appropriati all’entrata del magazzino.

Apporre i segnali di pericolo sulla parete esterna del magazzino (Fig. 16). Disporre sulla porta di ingresso del magazzino il cartello generico di pericolo [!] e/o il cartello “pericolo di morte” se necessario e il cartello “Vietato fumare” o “Evitare fiamme libere”.

![Fig. 16 - Cartelli di pericolo posizionati all’ingresso del magazzino di stoccaggio degli agrofarmaci.](image2)

ASPETTI GENERALI

23. Utilizzare sempre magazzini per prodotti fitosanitari che siano a prova di fuoco.
Nella realizzazione del magazzino per i prodotti fitosanitari attenersi alle normative vigenti con particolare riferimento alla prevenzione incendi.
A titolo indicativo: le pareti, le porte ed i materiali impiegati per la costruzione del magazzino, compreso il tetto, devono essere ignifughi. Proteggere le scaffalature metalliche dal calore. Le pareti tagliafuoco devono superare il tetto del magazzino. Dovrebbe essere garantita un’ora di resistenza al fuoco in contesti a rischio di incendio su vasta scala (es. boschi), almeno 30 minuti di resistenza al fuoco dove è possibile garantire un pronto intervento dei Vigili del Fuoco.

24. **Separare i canali di scolo delle acque piovane del magazzino da quelli destinati alla raccolta delle acque contaminate con gli agrofarmaci.**

Isolare il pavimento del magazzino degli agrofarmaci in modo tale che eventuali fuoriuscite di prodotti fitosanitari non possano raggiungere la rete fognaria.
Se necessario, sigillare opportunamente la base delle pareti e prevedere una soglia in corrispondenza della porta di ingresso del magazzino, in modo tale che eventuali fuoriuscite di prodotti fitosanitari non possano disperdersi nell’ambiente circostante.

25. **Il locale di stoccaggio dovrebbe essere dotato di un sistema per la raccolta delle acque contaminate da agrofarmaci.**

E’ consigliato che i magazzini di nuova costruzione destinati allo stoccaggio di oltre 1 tonnellata di prodotti fitosanitari abbiano un serbatoio per la raccolta delle acque contaminate.
In mancanza di riferimenti legislativi nazionali si riportano delle indicazioni relative ad altri Paesi Europei. Secondo l’ Health & Safety Executive, UK, la capacità del serbatoio di stoccaggio deve avere capacità almeno pari al 110% (Fig. 17) del volume stoccato (185% se il magazzino è ubicato in aree molto sensibili all’inquinamento delle acque).

![Fig. 17 – Capacità minima del serbatoio per la raccolta delle acque contaminate.](image-url)
Secondo la legislazione tedesca il magazzino dovrebbe garantire la raccolta di un volume di acqua contaminata pari ad almeno il 10% del volume stoccato (pari al 100% del volume stoccato se ubicato in aree sensibili all’inquinamento).
26. **Nel magazzino utilizzare sempre ripiani in materiale non assorbente e privi di spigoli taglienti (Fig. 18)**

![Image of shelves](image1)

Fig. 18 - Usare scaffalature facilmente lavabili e ignifughe e prive di spigoli taglienti

27. **Proteggere le confezioni in carta (es. sacchi dei formulati in polvere) dal contatto con spigoli e margini taglienti.**

Attutire gli spigoli per esempio sistemandovi in prossimità dei contenitori robusti.

28. **Conservare gli agrofarmaci nei loro contenitori originali con le etichette originali integre e leggibili.**

Stoccare gli agrofarmaci nei loro contenitori originali e con le etichette integre in luogo asciutto e coperto, preferibilmente a temperatura compresa tra 5 e 40 °C (Fig. 19), al riparo dalla luce solare. I contenitori danneggiati e riparati devono essere sistemati in appositi contenitori con chiusura ermetica e identificati con un’etichetta recante il nome del prodotto ed i relativi rischi.

Vedi anche l’indicazione 2.

![Image of temperature range](image2)

Fig. 19 – La temperatura all’interno del locale di stoccaggio deve essere mantenuta tra i 5 e i 40 °C.

29. **Controllare che le confezioni non siano danneggiate o deteriorate prima di movimentarle.**
30. **Isolare le confezioni danneggiate e/o che presentano perdite.**
Sistemare i contenitori danneggiati o che perdono in un contenitore a tenuta, a sua volta ubicato in un luogo sicuro del magazzino, lontano dagli altri materiali.

31. **Conservare nel magazzino soltanto le quantità di agrofarmaci necessarie per l’utilizzo corrente.**
E’ opportuno conservare soltanto i quantitativi di agrofarmaci necessari per soddisfare le esigenze dei 6 mesi successivi al loro arrivo in azienda e comunque la durata dello stoccaggio non deve superare un anno (Fig. 20). I magazzini devono disporre di appositi contenitori (cassonetti, armadietti) per conservare separatamente i prodotti non più utilizzabili (non più registrati, non ammessi, ecc.) e per raccogliere le perdite accidentali di prodotto. Evitare sempre lo stoccaggio degli agrofarmaci per un lungo periodo, in modo da escludere l’accumulo di prodotti scaduti o non più autorizzati/registrati (vedi anche la fase “Gestione dei prodotti reflui del trattamento”).

![Fig. 20 – Il tempo massimo di stoccaggio degli agrofarmaci non deve essere maggiore di 1 anno.](image)

32. **Fornire il magazzino dei prodotti fitosanitari di adeguati strumenti (es. bilance, cilindri graduati) per misurarne il peso/volume (Fig. 21).**
I magazzini devono avere strumenti dedicati per il dosaggio degli agrofarmaci, conservati in un’area protetta del magazzino stesso.
Fig. 21 – Locale dotato di accessori (bilancia, cilindri graduati, ecc...) per il corretto dosaggio degli agrofarmaci.

33. **Conservare i contenitori di agrofarmaci vuoti in uno spazio apposito al riparo dalla pioggia.**

Conservare i contenitori vuoti con le chiusure rivolte verso l’alto, insieme con le relative linguette e con i coperchi ben chiusi, sistemandoli in un cassonetto/contenitore chiuso/sacco di plastica trasparente (Fig. 22, Fig. 23, Fig. 24), sistemato in un luogo sicuro all’interno o in prossimità del magazzino (se legalmente consentito) su una superficie che consenta di raccogliere eventuali gocciolamenti (esempio disporre di appositi cassonetti o sacchi di plastica nel magazzino degli agrofarmaci).

Fig. 22 – Sacchetto per la raccolta dei contenitori vuoti degli agrofarmaci (Foto ISK).
Fig. 23 – Cassonetto chiuso per lo stoccaggio temporaneo dei contenitori vuoti di agrofarmaci prima della loro raccolta da parte dei centri specializzati.

Fig. 24 – Stoccaggio non corretto dei contenitori vuoti degli agrofarmaci.

Se adeguatamente risciacquati, i contenitori vuoti possono essere smaltiti con gli altri rifiuti (verificare le disposizioni vigenti a livello regionale/locale). In questo caso i contenitori devono essere resi inservibili per un eventuale riutilizzo ad esempio forandoli o schiacciandoli.

VERSAMENTI/PERDITE DI PRODOTTO

34. I pavimenti dei magazzini per i prodotti fitosanitari dovrebbero essere lisci per facilitarne la pulizia (Fig. 25).

I pavimenti devono essere impermeabili e non avere inclinazioni eccessive che pregiudichino l’equilibrio del materiale stoccato e delle persone. Il pavimento del magazzino deve essere privo di buche, gibbosità, sconnessioni. I pavimenti devono essere rigidi e non scivolosi.
Fig. 25 – Il locale per lo stoccaggio degli agrofarmaci deve essere dotato di pavimento liscio e non scivoloso.

35. **Contenere e smaltire immediatamente in condizioni di sicurezza tutti i versamenti e le perdite accidentali di prodotto.**

Controllare le schede di sicurezza e/o le istruzioni riportate in etichetta per contenere ed assorbire le perdite; utilizzare sabbia asciutta o lettiera per gatti (per prodotti infiammabili) o segatura (Fig. 26). Raccogliere il materiale contaminato e gli eventuali detriti su una superficie solida e sistemarli in un contenitore chiuso ed etichettato; conservare il contenitore nella sezione del magazzino dove si trovano i prodotti non più autorizzati/registrati. Le perdite accidentalì sul terreno dovrebbero essere assorbite con segatura che possa essere poi raccolta con il suolo circostante e smaltita direttamente nel campo dove quel prodotto è normalmente distribuito.

Fig. 26 – Le perdite accidentali di prodotto devono essere contenute ad esempio utilizzando del materiale assorbente inerte.

Le perdite assorbite possono essere anche smaltite in un biofiltro, se disponibile. Il materiale organico contaminato (es. segatura) può essere anche conservato in contenitori
chiusi ed avviato all’incenerimento attraverso aziende specializzate per il trattamento di rifiuti pericolosi (vedi anche la fase “Gestione dei prodotti reflui del trattamento”)

36. **Il magazzino dovrebbe essere fornito di materiale idoneo per tamponare i versamenti accidentali di prodotto.**
Il/i contenitore/i per il materiale assorbente inerte (sabbia, segatura) insieme con una spazzola per il pavimento, stracci e sacchi di plastica deve essere sempre disponibile e conservato in un luogo del magazzino ben visibile (Fig. 27). Disporre di almeno una confezione di guanti in lattice monouso di emergenza.

![Fig. 27 – Esempio di materiale assorbente (in questo caso segatura) per tamponare eventuali perdite accidentali di prodotto nel magazzino di stoccaggio.](image)

37. **Non immettere le acque di lavaggio dei versamenti accidentali di prodotto nei canali di scolo.**
I versamenti, i gocciolamenti, le perdite accidentali di prodotto devono essere tenuti in considerazione ed occorre che vi siano adeguate disposizioni in grado di garantirne il corretto smaltimento. Leggere le etichette dei prodotti. Non lavare mai le perdite immettendo direttamente l’acqua contaminata nelle fognature o nei corpi idrici. Utilizzare soltanto gli appositi sistemi di raccolta delle acque contaminate che le convogliano in un apposito serbatoio, se presente, o provvedere a tamponare le perdite con adeguato materiale assorbente (vedi anche fase “Gestione dei prodotti reflui del trattamento”).

GESTIONE DELLE EMERGENZE

38. **Tenere sempre a disposizione nel magazzino (o nei pressi dell’armadietto chiuso a chiave) l’elenco delle procedure di emergenza da adottare in caso di incendio.**
Una copia delle procedure di emergenza dovrebbe essere tenuta in un luogo sicuro e separato dal locale di stoccaggio dei fitofarmaci insieme con la chiave per l’accesso al magazzino stesso. Le procedure di emergenza (vedi D. Lgs. 81/2008) devono riportare una piantina del magazzino con le vie di accesso, i numeri di emergenza (mostrati anche sulla
porta di entrata del magazzino) ed avere allegato l’inventario aggiornato mensilmente dei prodotti stoccati (tipo e quantità).

39. **In caso di incendio, chiamare subito i vigili del fuoco.**
Chiamare subito i Vigili del Fuoco se si sviluppa un incendio all’interno o in prossimità del magazzino degli agrofarmaci. Non tentare di spegnere le fiamme fino a che non vi sia del personale autorizzato sul posto che possa supervisionare le vostre azioni.

40. **In caso di incendio, evitare di utilizzare eccessivi volumi d’acqua, così da minimizzare il fenomeno di ruscellamento delle acque contaminate e impiegare i dispositivi più idonei per lo spegnimento (es estintori a polvere)**
Polvere, schiuma e acqua nebulizzata (non getti) possono essere i mezzi più appropriati e sicuri per estinguere le fiamme senza aumentare i rischi di perdite incontrollate di agrofarmaci nell’ambiente. (Guidelines for the safe transport of pesticides, GIFAP, 1987, Chapter: Emergency procedures, p. 45).

41. **In caso di incendio, raccogliere e conservare le acque contaminate da agrofarmaci.**
I nuovi magazzini destinati allo stoccaggio di oltre 1 tonnellata di prodotti fitosanitari è suggerito siano dotati di un serbatoio per la raccolta delle acque contaminate con capacità pari al 110% del volume stoccato (185% se il magazzino è ubicato in aree molto sensibili all’inquinamento delle acque). [rif.: Health & Safety Executive, UK].

42. **In caso di incendio, raccogliere il materiale contaminato per poterlo smaltire correttamente in condizioni di sicurezza.**
FASE 3: PRIMA DI INIZIARE IL TRATTAMENTO

Principi generali

- Pianificare il trattamento in azienda;
- tenere conto degli aspetti ambientali per la scelta del tipo di irroratrice e dei parametri da adottare per il trattamento;
- effettuare la manutenzione dell’irroratrice regolarmente per evitare residui e perdite di tempo;
- evitare perdite di prodotto accidentali;
- non immettere mai direttamente il prodotto fuoriuscito accidentalmente nelle acque superficiali o nella rete fognaria;
- conoscere le procedure di emergenza.

La fase preliminare all’esecuzione del trattamento è molto importante al fine di prevenire i rischi generali legati alla manipolazione degli agrofarmaci. In particolare, ciò vale per quanto riguarda i rischi di contaminazione delle acque. Porre attenzione alla prevenzione in questa fase consente infatti di evitare problemi in seguito, e conseguenti maggiori costi per arginare le eventuali contaminazioni.

Pianificare adeguatamente il trattamento è già “compiere metà dell’opera”. Eventuali costi iniziali legati a questa operazione sono ampiamente ripagati sul lungo periodo. Alcune operazioni di pianificazione possono essere effettuate una volta ogni dieci anni (es. mappatura dei pozzi, delle aree vulnerabili, dei margini dei campi), altre devono essere ripetute ogni volta che si esegue un trattamento (es. scelta del tipo di ugello in funzione delle condizioni ambientali del momento).
Per quanto riguarda l’acquisto dell’irroratrice sono molte le variabili in gioco. Si devono considerare gli aspetti economici (budget disponibile), quelli legati alla dimensione dell’azienda, al tipo di coltura, alla dimensione media degli appezzamenti, quelli legati all’offerta del rivenditore ed all’assistenza tecnica, infine, quelli legati alle preferenze personali.

La scelta dell’attrezzatura ha, comunque, un impatto notevole sull’uso dei prodotti fitosanitari in azienda e sui rischi di inquinamento delle acque. Attualmente, comperare un’irroratrice è una decisione di medio-lungo termine (tipicamente la durata di tale attrezzatura è tra i 10 e i 20 anni), che comporta una serie di conseguenze legate alla capacità operativa, alla sicurezza dell’operatore e dell’ambiente ed ai relativi costi. Le irroratrici sono sempre più soggette a vincoli normativi ed a requisiti tecnici minimi. Sebbene oggi non tutti questi requisiti siano obbligatori, è comunque buona norma scegliere le attrezzature che ottemperano già sia alle normative vigenti che a quelle in corso di definizione (www.enama.it). Un punto chiave, ad esempio, riguarda la quantità di miscela residua nell’irroratrice e che la macchina non è in grado di erogare. A questo riguardo si consiglia di chiedere al proprio rivenditore, per i diversi modelli di macchine irroratrici, quale sia il volume residuo non distribuibile e di considerare questo parametro come elemento decisivo per la scelta dell’irroratrice da acquistare. Altri aspetti di cui tenere conto sono la presenza di dispositivi antigoccia, la facilità e sicurezza per le operazioni di pulizia dei filtri, la possibilità di recuperare in condizioni di sicurezza l’eventuale miscela residua rimasta nel serbatoio.

Molto importante è poi la presenza di dispositivi per agevolare l’introduzione del prodotto fitosanitario nel serbatoio dell’irroratrice, ossia dei pre-miscelatori, o quanto meno di ugelli lavabarattolo posti in corrispondenza del filtro a cestello nell’apertura principale del serbatoio, che consentono il risciacquo immediato del contenitore di agrofarmaco esaurito.

L’attrezzatura, di per sé, non è tuttavia sufficiente a contenere i rischi di inquinamento legati alla manipolazione degli agrofarmaci; occorre anche adottare una serie di comportamenti corretti.

L’irroratrice deve essere controllata e regolata adeguatamente. Ciò consente di ottimizzare l’impiego degli agrofarmaci, garantendo la loro distribuzione uniforme sulla coltura e, soprattutto, consente di ridurre al minimo la quantità di miscela avanzata a fine trattamento.

Anche per quanto riguarda l’area per la miscelazione del prodotto ed il riempimento dell’irroratrice è bene rispettare gli standard di sicurezza più elevati, in maniera tale da ridurre i rischi di inquinamento puntiforme. Infine, particolare attenzione deve essere posta durante la fase di trasporto dell’irroratrice, riempita con la miscela fitoiotica, dal
centro aziendale al campo da trattare, affinché non si verifichino fenomeni di inquinamento dovuti a perdite accidentali (gocciolamenti da raccordi, dal coperchio del serbatoio riempito eccessivamente, ecc.)

Pianificazione

43. **Pianificare sempre le attività legate alla distribuzione dei prodotti fitosanitari.**

Si intende sia la preparazione preliminare generale sia la preparazione di un particolare trattamento contro una specifica avversità. Comprende programmi di gestione per il suolo, l’energia utilizzata, le colture e la lotta integrata, la salvaguardia dell’ambiente e del paesaggio; prevenire e rendere minime le avversità delle colture e gestire tutti i rischi nel loro complesso.

44. **Utilizzare gli ugelli appropriati per il trattamento che si deve effettuare.**

Selezionare ed impiegare la tipologia e la dimensione dell’ugello tenendo conto delle caratteristiche dell’agrofarmaco, del tipo di avversità, delle caratteristiche della coltura, del tipo di superficie fogliare, delle condizioni meteorologiche, dei rischi di deriva e di contaminazione delle aree adiacenti a quella trattata (Tab. 2).

Vedi anche l’indicazione 89: “Non provocare fenomeni di deriva”.
TIPO DI UGELLO

<table>
<thead>
<tr>
<th>Distribuzione su terreno</th>
<th>Fessura 110°</th>
<th>Fessura 80°</th>
<th>Turbolenza 80°</th>
<th>Doppia Fessura</th>
<th>Inclusione d’aria</th>
<th>Specchio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penetrazione nella vegetazione</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Sensibilità al vento</td>
<td>**</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td>Sensibilità variazioni altezza barra</td>
<td>***</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Sensibilità otturamento</td>
<td>*</td>
<td>*</td>
<td>**</td>
<td>*</td>
<td>**</td>
<td>***</td>
</tr>
<tr>
<td>Trattamenti erbicidi in post emergenza iniziale</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>*</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Trattamenti erbicidi in post emergenza piena vegetazione</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Fungicidi ed insetticidi</td>
<td>**</td>
<td>*</td>
<td>***</td>
<td>***</td>
<td>*</td>
<td>-</td>
</tr>
<tr>
<td>Erbicidi non selettivi sistemici</td>
<td>***</td>
<td>***</td>
<td>-</td>
<td>*</td>
<td>***</td>
<td>**</td>
</tr>
</tbody>
</table>

- da evitare
* impiego sconsigliabile ma possibile in certi casi
** impiego accettabile
*** impiego in grado di fornire un ottimo risultato

Tab. 2 – Esempi di criteri di scelta del tipo di ugello nel caso di impiego di barre irroratrici (Fonte: Documento Enama n°10/2010 - “Linee guida per la regolazione delle irroratrici in uso per le colture erbacee e per il diserbo delle colture arboree”).

45. Individuare la posizione di tutte le aree più sensibili all’inquinamento.

Pianificare la salvaguardia della natura e dell’ambiente. Effettuare un’indagine sull’ambiente naturale dell’azienda. Identificare le aree sensibili per la contaminazione delle acque, della flora e della fauna protetta (Fig. 28). Utilizzare come supporto mappe topografiche se disponibili. Sviluppare misure per la difesa dell’ambiente e descriverle in procedure da seguire per l’operatore/utilizzatore degli agrofarmaci.
46. **Costruire adeguatamente i pozzi e dotarli di appropriata copertura.**
Seguire la legislazione vigente a livello nazionale.
Se sono disponibili altre opzioni, scavare i nuovi pozzi lontano da aree che si allagano facilmente, paludi e dalle aree dedicate al riempimento e lavaggio delle irroratrici. Assicurarsi che il rivestimento del pozzo sia adeguatamente stuccato. Coprire i pozzi per evitare la contaminazione diretta o indiretta (es. deriva). Preferibilmente prolungare il rivestimento del pozzo al di sopra del livello del terreno (almeno 25 cm sopra il livello del terreno o 50 cm al di sopra del pavimento o del livello delle inondazioni registrato negli ultimi 100 anni). [Rif = Adams E. and Hoffmann T., Abandoned Wells: Forgotten holes to Groundwater, EB1714, CE Publications]

47. **Coprire adeguatamente i pozzi abbandonati (Fig. 29).**
I pozzi abbandonati e scoperti devono essere coperti efficacemente con sistemi a tenuta poiché costituiscono una facile via di accesso alle falde acquifere per gli agrofarmaci distribuiti nelle vicinanze. Vedi anche l’indicazione 71.
Fig. 29 – Pozzo adeguatamente protetto (foto Harper Adams).

48. **Non trattare se il terreno è gelato o coperto di neve.**
Le condizioni atmosferiche e del terreno, esistenti e previste, devono essere valutate in funzione del rischio di perdite di prodotto dall’area oggetto del trattamento. Controllare le etichette per eventuali eccezioni.
49. **Non trattare se il terreno è allagato (eccetto il caso delle risaie, Fig. 30).**

Fig. 30 – Quando il terreno è allagato è assolutamente da evitare qualunque tipo di trattamento (tranne nel caso delle risaie).

Vedi anche l’indicazione 86 "Non irrorare su corsi d’acqua, pozzi, fontane, canali di scolo e superfici asfaltate”. Soltanto alcune applicazioni specifiche degli agrofarmaci sono esenti da questa regola, come ad esempio quelle previste contro le malerbe acquatiche e le alghe e quelle autorizzate per la coltivazione del riso non in asciutta.

50. **Non trattare se sono previste piogge intense.**

In particolare, tenere conto delle aree soggette a ruscellamento degli agrofarmaci nelle acque superficiali e sotterranee (a causa della pendenza del terreno, della profondità e della tessitura del suolo, della presenza di aree vulnerabili per le acque). Se il trattamento non è procrastinabile, riferirsi sempre alle indicazioni riportate in etichetta e ai servizi di assistenza tecnica.

ATTREZZATURA

51. **Impiegare attrezzature con marchio CE (Fig. 31) e quelle che soddisfano i requisiti previsti dalle Norme internazionali ISO EN (Fig. 32).**

Tutte le irroratrici nuove di fabbrica devono essere conformi ai requisiti CE, anche per la manutenzione. Il rispetto delle più importanti Norme EN ISO fornisce una “presunzione di conformità”; verificare la presenza del marchio CE sulla macchina e la disponibilità del certificato di conformità al momento dell’acquisto.
Fig. 31 – Verificare la presenza del marchio CE sull’irroratrice e la disponibilità del certificato di conformità al momento dell’acquisto.

Fig. 32 – Esempio di report ENAMA.

Le irroratrici già in uso dovrebbero essere conformi – quando possibile – alle specifiche sopra riportate ed ai requisiti minimi previsti per i controlli funzionali.
Le irroratrici assemblate (prive di marchio ufficiale), sia nuove che assemblate in proprio o
modificate, devono essere in grado di soddisfare gli stessi requisiti richiesti per le irroratrici
nuove di fabbrica.

52. Utilizzare irroratrici dotate di dispositivi antigoccia sugli ugelli (Fig. 33 e Fig. 34).
I dispositivi antigoccia devono garantire che 8 secondi dopo la chiusura delle valvole non vi
sia più liquido che fuoriesce dagli ugelli. Da ciascun ugello non devono uscire più di 2 ml di
liquido nei 5 minuti successivi (EN ISO 16119). Questa specifica è riportata anche nella EN
13790 (5 s dopo l’interruzione dei getti non si deve avere gocciolamento dagli ugelli) e
nelle linee guida ENAMA (www.enama.it).

Fig. 33 – Particolare di ugello abbinato ad antigoccia.

Fig. 34 - Esempio di ugello NON dotato di dispositivi antigoccia (sinistra) e di antigoccia non
funzionante (destra).
53. I getti erogati dagli ugelli non devono mai colpire parti della macchina irratatrice (Fig. 35).

Fig. 35 - Esempio di macchina irratatrice in cui il getto erogato colpisce il serbatoio determinando il gocciolamento a terra della miscela fitoziatra e causando, quindi, inquinamento puntiforme.

Fanno eccezione i sensori posti alle estremità della barra irratatrice.
Eventuali interferenze che ostacolino l’erogazione regolare del liquido dagli ugelli e provochino gocciolamenti e/o contaminazione esterna dell’irratatrice devono essere eliminate prima di iniziare il trattamento.

54. Utilizzare irratrici che siano in grado di rendere minimo il volume di miscela non distribuibile (non aspirata dalla pompa e residua nelle tubazioni, Fig. 36 e Fig. 37).

Questo volume residuo non distribuibile è in parte diluibile (normalmente comprende il contenuto rimasto in cisterna e nelle tubazioni a monte delle sezioni di mandata agli ugelli), in parte non diluibile (tipicamente il contenuto dei tubi di mandata a valle del regolatore di pressione). Vedi anche il glossario. (Fig. 38).

Irратrici nuove:
Per le barre irratrici e per gli atomizzatori i limiti massimi per tale residuo sono definiti nella Norma EN ISO 16119.
Per le irratrici a spalla i limiti massimi per tale residuo sono definiti nella Norma ISO 19932 (Tab. 3).

Irратrici in uso:
Gli agricoltori dovrebbero consultare il proprio rivenditore di irratrici per stabilire il volume residuo non distribuibile.
(Vedi anche l’indicazione 55).
Fig. 36 – Miscela residua nel serbatoio poiché non aspirata dalla pompa (foto E. Nilsson – Visavi)

Fig. 37 – Alcuni esempi di quantità di miscela residua nel serbatoio (residuo diluibile) di differenti modelli di irroratrici per colture arboree (prove Università Torino).
VOLUME TOTALE RESIDUO NELL’IRGORATRICE

DILUIBILE: miscela residua nel serbatoio o nel circuito di aspirazione, nella pompa, nel circuito di mandata fino alla valvola di pressione e nel circuito ritorno

NON DILUIBILE: parte che non può tornare nel serbatoio (nel circuito di mandata dopo la valvola di pressione)

1 – pompa
2 – valvola di pressione
3 – valvola a 3 vie
4 – valvola a 3 via
5 – ugelli
6 – serbatoio
7 – lavaimpianto

Fig. 38 – Residuo a fine trattamento: differenza tra frazione diluibile e non diluibile.

<table>
<thead>
<tr>
<th>REQUISITI PREVISTI DALLA EN ISO 16119</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barre irroratrici</td>
</tr>
<tr>
<td>Il volume totale residuo non deve eccedere lo 0.5% del volume nominale più 2 l per metro di barra.</td>
</tr>
<tr>
<td>Atomizzatori</td>
</tr>
<tr>
<td>Il volume totale residuo non deve eccedere:</td>
</tr>
<tr>
<td>- 4% della capacità nominale per serbatoi con capacità nominale inferiore a 400 l;</td>
</tr>
<tr>
<td>- 3% della capacità nominale per serbatoi con capacità nominale compresa fra 400 l (incluso) e 1000 l (incluso);</td>
</tr>
<tr>
<td>- 2% della capacità nominale per serbatoi con capacità nominale superiore a 1000 l.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REQUISITI PREVISTI DALLA ISO 19932</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irroratrici manuali spalleggiate</td>
</tr>
<tr>
<td>La quantità di liquido residua all’interno del serbatoio deve essere ≤250 ml nel caso di serbatoi con capacità nominale ≤17 litri e ≤1.5% della capacità nominale nel caso di serbatoi con capacità nominale >17 litri.</td>
</tr>
</tbody>
</table>

Tab. 3 – Requisiti relativi al residuo nell’irroratrice a fine trattamento secondo le vigenti norme internazionali.
55. **Impiegare irroratrici dotate di serbatoio lava impianto (Fig. 39 e Fig. 40).**

Per le irroratrici nuove:

Il volume del serbatoio lava impianto dovrebbe consentire di diluire il volume di miscela residua nella macchina ad una concentrazione pari o inferiore all’1% di quella utilizzata per il trattamento. Tipicamente, per raggiungere questa diluizione, occorre che il volume del serbatoio lava impianto sia almeno 10 volte quello del residuo non distribuibile. Per ciascuna irroratrice, il costruttore dovrebbe fornire all’agricoltore i dati relativi al volume non distribuibile e le procedure per ottenere la massima diluizione possibile della miscela residua. Tali procedure per il risciacquo dell’irroratrice dovrebbero essere rese disponibili per l’agricoltore.

Fig. 39 – Il serbatoio lava impianto deve avere almeno il 10% della capacità nominale del serbatoio principale o almeno 10 volte il volume diluibile (EN ISO 16119). La sua presenza consente di effettuare in campo il lavaggio dell’irroratrice e lo smaltimento della miscela residua nel serbatoio principale. Deve essere progettato in modo da consentire il risciacquo delle tubazioni anche con il serbatoio principale pieno e la diluizione del residuo all’interno dello stesso.

TOPPS raccomanda, come regola generale, l’esecuzione del risciacquo dell’irroratrice in tre step successivi.

Per le **irroratrici in uso** prive di serbatoio lava impianto, riferirsi all’indicazione 98 “Ripetere le operazioni di risciacquo dell’irroratrice più volte” ed alla sezione sulla “Gestione dei prodotti reflui del trattamento”.
Fig. 40 – Se l’irroratrice non è dotata di serbatoio lavaimpianto, è possibile impiegare dei serbatoi accessori facilmente montabili sulla macchina (foto E. Nilsson – Visavi).

56. **Utilizzare irroratrici con sistemi di chiusura del serbatoio in grado di impedirne l’apertura accidentale (Fig. 41).**

Fig. 41 – Esempio di coperchio del serbatoio principale della macchina irroratrice con adeguato sistema di chiusura.

57. **Utilizzare irroratrici che consentano di raccogliere il liquido dal rubinetto di scarico del serbatoio senza contaminarsi (Fig. 42).**

Gli operatori, gli addetti alla manutenzione, i componenti della macchina e l’ambiente non devono essere contaminati durante le operazioni di svuotamento dell’irroratrice. Utilizzare dei contenitori adeguatamente etichettati per raccogliere la miscela residua e controllare...
la sezione “Gestione dei prodotti reflui del trattamento” per il corretto smaltimento o riutilizzo.

Fig. 42 – Esempio di rubinetto per la raccolta in sicurezza della miscela residua nel serbatoio

CONTROLLO FUNZIONALE E REGOLAZIONE

58. **Effettuare sempre la regolazione (taratura) dell’irroratrice.**

Il controllo funzionale e la regolazione dell’irroratrice sono essenziali per evitare di avanzare della miscela nel serbatoio a fine trattamento e per ottenere una buona efficacia del trattamento. Le attrezzature per la distribuzione degli agrofarmaci devono essere controllate e regolate (modificate se necessario) per applicare la dose di prodotto, il volume di distribuzione ed il livello di polverizzazione delle gocce prescritti in etichetta e precisati dai servizi di assistenza tecnica (Fig. 43 e Fig. 44).

Fig. 43 – Schema dei parametri operativi sui quali intervenire per la regolazione delle barre irroratrici.

<table>
<thead>
<tr>
<th>1 – volume di distribuzione</th>
<th>5 – pressione di esercizio</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – velocità di avanzamento</td>
<td>6 – altezza barra</td>
</tr>
<tr>
<td>3 – tipo di ugello</td>
<td>verifica del volume di distribuzione reale</td>
</tr>
<tr>
<td>4 – portata ugelli</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 44 - Schema dei parametri operativi sui quali intervenire per la regolazione degli atomizzatori.

Eseguire le procedure di regolazione per definire i parametri operativi (tipo di ugello, pressione di esercizio, velocità di avanzamento) in funzione del volume di distribuzione e della dose di prodotto che si intende applicare. La frequenza della regolazione dipende dagli eventi intervenuti dopo l’ultima regolazione effettuata (es. cambio delle ruote, del computer di bordo, degli ugelli, del manometro; esecuzione di operazioni di manutenzione; ore di utilizzo della macchina).

Il controllo funzionale dovrebbe essere, comunque, effettuato prima di ogni impiego dell’irroratrice per garantire il corretto funzionamento dell’attrezzatura.

Aspetti generali: limitare la fascia trattata all’area bersaglio, impiegare ugelli di fine barra per trattare i margini del campo (Fig. 45); in caso di irroratrici aero-assistite regolare opportunamente la velocità ed il volume dell’aria in funzione dello sviluppo vegetativo (Fig. 46). Le condizioni di campo possono richiedere che tali regolazioni vengano eseguite prima di effettuare il trattamento (es. per limitare la deriva) o durante l’esecuzione del trattamento (es. la larghezza di lavoro può essere variata per rispettare le buffer zones).

Fig. 45 – L’impiego degli ugelli di fine barra consente di limitare il trattamento all’area effettivamente coltivata.
Fig. 46 – Per ridurre le perdite di prodotto a terra e per deriva è necessario dirigere il getto sulla fascia vegetativa da trattare.

59. **Impiegare volumi di distribuzione adeguati in funzione del tipo di trattamento.**
Il volume di distribuzione è, generalmente, stabilito in funzione della coltura, del tipo di bersaglio, del tipo di agrofarmaco (Tab. 4) e delle condizioni ambientali, in modo tale da ottenere il miglior compromesso elevata efficacia / ridotto impatto ambientale.

<table>
<thead>
<tr>
<th>Tipo di Coltura</th>
<th>Trattamento diserbante (l/ha)</th>
<th>Trattamento fungicida o insetticida (l/ha)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Massimo²</td>
<td>consigliato</td>
</tr>
<tr>
<td>Cereali vernini</td>
<td>400</td>
<td>150-250</td>
</tr>
<tr>
<td>Maïs, girasole, sorgo</td>
<td>500</td>
<td>Pre=150-250 Post=300-400</td>
</tr>
<tr>
<td>Riso</td>
<td>400</td>
<td>150-300</td>
</tr>
<tr>
<td>Pomodoro, patata</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>Barbabietola</td>
<td>400</td>
<td>Pre=150 Post=300</td>
</tr>
</tbody>
</table>

¹volumi riferiti al massimo sviluppo vegetativo
² non è consentito superare le dosi massime di sostanza attiva/ha indicate in etichetta

Tab. 4 – Esempi di volumi di distribuzione massimi ammissibili e consigliati per alcune colture (Fonte: Documento Enama n°10/2010 - “Linee guida per la regolazione delle irroratrici in uso per le colture erbacee e per il diserbo delle colture arboree”).

Per volumi di distribuzione elevati: ottimizzare la ritenzione dell’agrofarmaco sulla superficie del bersaglio ed evitare fenomeni di gocciolamento o ruscellamento.
Ridurre al minimo la frazione di gocce molto fini (<100 µm) per prevenire la deriva. Consultare il costruttore / rivenditore di ugelli o il manuale di istruzione degli ugelli se quelli impiegati sono ugelli a polverizzazione molto fine (VF). Non eccedere nella concentrazione di agrafarmaco nella miscela fitoiotica, oltre i limiti riportati in etichetta e
comunque in generale non superare di oltre 10 volte il valore di riferimento per l’impiego normale. Prendere in considerazione l’effetto di una maggiore concentrazione della miscela utilizzata nel definire le procedure di lavaggio dell’attrezzatura. Avvalersi sempre dell’assistenza di un esperto se un trattamento richiede di superare i range di dosaggio prescritti in etichetta.
Vedi anche l’indicazione 61.

60. **Effettuare la regolazione dell’irroratrice utilizzando acqua pulita.**
Il controllo funzionale e la regolazione dell’irroratrice sono essenziali per evitare di avanzare della miscela nel serbatoio a fine trattamento. Prima di iniziare il trattamento le irroratrici devono essere regolate utilizzando acqua pulita (evitare che vi siano residui o particelle in sospensione che possono intasare gli ugelli o provocare malfunzionamenti dell’attrezzatura). Non è necessario impiegare acqua potabile, tuttavia l’acqua utilizzata non deve rappresentare un rischio per l’esposizione dell’operatore e per l’ambiente. Tenere conto che alcune miscele fitoiatriche molto viscosse possono richiedere una regolazione dei parametri operativi leggermente diversa rispetto a quella impostata con l’acqua.

61. **Utilizzare i dati della regolazione/taratura (Box 1 e Box 2) e della superficie da trattare, e le indicazioni riportate in etichetta (Fig. 47) per calcolare esattamente le quantità di acqua e di agrofarmaco necessarie per l’esecuzione del trattamento.**
Non deve essere preparata più della quantità massima di prodotto richiesta. Dopo aver stabilito il volume di distribuzione necessario (indicazione 59), aver effettuato la regolazione con acqua (indicazione 60) ed aver effettuato il controllo funzionale di tutta l’attrezzatura (indicazione 58) è fondamentale conoscere esattamente la quantità di miscela necessaria per la superficie da trattare. Ciò comprende il volume complessivo d’acqua e la quantità totale di agrofarmaco da immettere nel serbatoio.

Fig. 47 – E’ sempre opportuno leggere attentamente le indicazioni riportate dal produttore prima di impiegare un agrofarmaco.
Calcolo del volume (V) di acqua da distribuire (l/ha):

Irroratrici per colture arboree

\[V = \frac{Q \times 600}{i \times v \times n} \]

- **Q** = portata totale dell’irroratrice (l/min)
- **i** = larghezza interfila (m)
- **v** = velocità di avanzamento (km/h)
- **n** = filari trattati contemporaneamente

Irroratrici per colture erbacee

\[V = \frac{q \times 600}{d \times v} \]

- **q** = portata media singolo ugello (l/min)
- **d** = distanza fra gli ugelli (m)
- **v** = velocità di avanzamento (km/h)

Box 1 – Calcolo del volume di distribuzione.

Calcolo della quantità di agrofarmaco (D_s) da inserire nel serbatoio dell’irroratrice

\[D_s = \frac{S}{V} \times D \]

Dove:
- **V** = volume di distribuzione (l/ha)
- **S** = capacità serbatoio (litri)
- **D** = dose/ha

Esempio:
- **S** = 600 litri
- **V** = 300 l/ha
- **Dose** = 1.5 kg/ha

\[D_s = \frac{S}{V} \times D = \frac{600}{300} \times 1.5 = 3 \text{ kg} \]

Box 2 – Calcolo della corretta quantità di agrofarmaco da inserire nel serbatoio della macchina irroratrice.
62. **Verificare il corretto funzionamento dell’irroratrice dopo i lunghi periodi di non utilizzo.**

Eseguire un’ispezione completa dell’irroratrice e quindi verificare il funzionamento con acqua pulita – prima di immettere l’agrofarmaco nella macchina – quando l’attrezzatura sia rimasta inutilizzata per 4 mesi o più. Controllare in particolare se vi sono segni di deterioramento delle tubazioni, dei raccordi e delle parti del circuito in pressione. Sostituire immediatamente i componenti deteriorati.

63. **Impiegare macchine irroratrici sottoposte a controllo funzionale periodico.**

Il controllo funzionale – nell’ambito di TOPPS – si intende eseguito da un Ente terzo, su base volontaria oppure obbligatorio, può essere ufficiale o non ufficiale, ma deve sempre essere opportunamente registrato e documentato. Il controllo funzionale delle irroratrici in uso, in attesa dell’emanazione della nuova Norma armonizzata EN ISO 16122 è eseguito secondo quanto previsto dalla Norma EN 13790 (Fig. 48 e Fig. 49).

Fig. 48 - Alcune fasi del controllo funzionale delle macchine irroratrici

Fig. 49 – Determinazione del diagramma di distribuzione durante il controllo funzionale.
64. Effettuare tutte le operazioni di regolazione/taratura e di manutenzione dell’irroratrice lontano da pozzi, sorgenti, canali ed aree sensibili all’inquinamento delle acque.

Per evitare che eventuali residui di agrofarmaco presenti nell’irroratrice contaminino l’ambiente, le operazioni di controllo funzionale e regolazione che prevedono l’attivazione degli ugelli devono essere preferibilmente eseguite lontano dalle aree sensibili all’inquinamento delle acque.

Assicurarsi che vengano applicate le corrette procedure per la pulizia della macchina irroratrice prima di eseguire la regolazione, con particolare riguardo agli ugelli (vedi anche indicazioni 93, 94, 97 e 98). Seguire l’indicazione 65 “Effettuare la regolazione dell’irroratrice utilizzando acqua pulita”. Effettuare le operazioni di regolazione preferibilmente su terreno inerbito o su un’area pavimentata attrezzata per il riempimento e per il lavaggio dell’irroratrice. La verifica finale della regolazione impiegando la miscela fitoietica dovrebbe essere eseguita in campo con la macchina in movimento (vedi indicazione 88).

Barre irroratrici: Per evitare di generare deriva durante la fase di regolazione, tenere la barra più bassa possibile (generalmente a 50 cm dal bersaglio, Fig. 50) nel corso della prova ed impiegare gli ugelli che producono gocce più grossolane prima di effettuare le regolazioni finali. Atomizzatori: verificare le funzioni idrauliche della macchina utilizzando gli ugelli che producono gocce più grossolane e disinserendo il ventilatore.

![Diagrama](image.png)

Fig. 50 – E’ sempre opportuno mantenere l’altezza da terra della barra la più bassa possibile per ridurre la possibilità di deriva del prodotto fitoietico.
Preparazione della miscela e riempimento dell’irroratrice

65. Non lasciare incustodita la macchina irroratrice durante la fase di riempimento. Utilizzare preferibilmente contalitri automatici (Fig. 51) per il riempimento o sensori di allarme montati sul serbatoio per segnalare il livello di troppo pieno.

FASE DI RIEMPIMENTO

![Diagramma di riempimento](image1)

RIEMPIMENTO TERMINATO – chiusura automatica rubinetto

![Diagramma di riempimento terminato](image2)

Fig. 51 – Quando sul contalitri si è raggiunto il volume preimpostato, automaticamente tramite la chiusura di un rubinetto si interrompe l’invio dell’acqua nel serbatoio principale.

66. Durante la fase di riempimento dell’irroratrice, non far traboccare la miscela o la schiuma dal serbatoio (Fig. 52 e Fig. 53). Disporre di una scala di lettura del serbatoio precisa e facilmente leggibile e controllarla durante il riempimento. I volumi introdotti nel serbatoio non devono mai superare quelli massimi indicati dal Costruttore. Il riempimento del serbatoio fino al volume massimo
tipicamente 105% del volume nominale (EN ISO 16119)) comporta dei rischi di traboccamento della schiuma e del liquido durante la movimentazione della macchina. Non utilizzare serbatoi (sia principali che lava impianto) che non siano espressamente realizzati per il trasporto delle miscele fitoiatriche. Controllare sempre la scala di lettura durante il riempimento del serbatoio e prendere in considerazione l’impiego di sensori di allarme. Prendere le necessarie precauzioni per evitare il traboccamento dei serbatoi delle macchine spalleggiate.

Fig. 52 – Traboccamento della miscela fitoiatrica dal serbatoio principale della macchina irroratrice (foto E. Nilsson – Visavi).
Fig. 53 – Una indicazione precisa e leggibile del liquido presente nel serbatoio è indispensabile per poter inserire nel serbatoio stesso il volume di acqua desiderato.

67. **Non lasciare incustodite le miscele di prodotti fitosanitari pronte per l’uso.**
Le irroratrici riempite con agrofarmaci concentrati o diluiti non devono mai essere lasciate incustodite. Isolare l’area dove si trova l’irroratrice riempita ed impedire l’accesso di animali e di persone non autorizzate. Prestare particolare attenzione all’accesso non autorizzato al contenuto del serbatoio ed alle valvole dell’irroratrice. In caso di emergenza, parcheggiare l’irroratrice su un’area attrezzata per contenere eventuali perdite.

68. **Gli agrofarmaci che non siano in un contenitore ben chiuso non devono essere lasciati incustoditi.**
I contenitori degli agrofarmaci devono essere prelevati - come previsto – dal magazzino (fisso o mobile) soltanto per l’impiego immediato. I contenitori aperti, le miscele pronte all’uso e le irroratrici contenenti agrofarmaci non devono essere lasciati incustoditi.

69. **Preparare la miscela fitoiotrica soltanto immediatamente prima di effettuare il trattamento.**
Minore è il tempo che intercorre tra la preparazione e la distribuzione della miscela fitoiotrica in campo, minore è il rischio che si verifichino contrattempi che ritardino o impediscano l’esecuzione del trattamento (es. scrosci di pioggia improvvisi).
Vedi anche l’indicazione 68 “Gli agrofarmaci che non siano in un contenitore ben chiuso non devono essere lasciati incustoditi”. Evitare di preparare la miscela fitoioatrica con largo anticipo se è prevista una pioggia entro breve.

“Aspetti prioritari” da considerare nel definire le modalità di preparazione della miscela fitoioatrica possono essere:

[A] in azienda: aspetti legati alla sicurezza dell’operatore; irroratrici non equipaggiate per il riempimento e l’introduzione dell’agrofarmaco in campo; aspetti legati alle condizioni di trasporto degli agrofarmaci dall’azienda al campo.

[B] in campo: aspetti legati alle condizioni ambientali mutevoli; lungo il tragitto dal centro aziendale al campo; irroratrice adeguatamente equipaggiata per il riempimento in campo.

(Vedi anche indicazioni 75, 76 e 77).
70. **Rendere minimi i residui di miscela a fine trattamento.**

Fig. 54 – Le frazioni che costituiscono la miscela residua a fine trattamento.

Preparare soltanto la quantità di miscela fitoiastrica necessaria per l’area da trattare. Considerare di lasciare delle porzioni del campo non trattate o trattate con una dose di agrofarmaco ridotta in prossimità del perimetro esterno dell’appezzamento, per potervi eseguire le operazioni di pulizia dell’irroratrice (Fig. 55).

Vedi anche le indicazioni 66 (Utilizzare i dati della regolazione e della superficie da trattare, e le indicazioni riportate in etichetta per calcolare esattamente le quantità di acqua e di agrofarmaco necessarie per l’esecuzione del trattamento) e 69 (Preparare la miscela fitoiastrica soltanto subito prima di effettuare il trattamento).
71. Non preparare la miscela fitoiatrica né riempire l’irroratrice con il prodotto fitosanitario in prossimità di un corso d’acqua o di un pozzo.
Oppure in luoghi dove le precipitazioni possano convogliare gli eventuali versamenti di prodotto verso i corpi idrici.
[1] controllare se in etichetta sono prescritte delle distanze di sicurezza;
[2] verificare la legislazione locale vigente circa i parametri di rischio specifici (es. punti di captazione dell’acqua potabile);
[3] effettuare una valutazione di rischio specifico per l’azienda tenendo conto della presenza di pozzi (vedi indicazione 46), di aree attrezzate per il riempimento e la pulizia dell’irroratrice, della situazione geografica, pedologica e geologica. Avvalersi se necessario di un esperto. Documentare tale valutazione ed agire di conseguenza;
[4] a titolo indicativo:
Se l’area è protetta ed attrezzata per raccogliere eventuali perdite: mantenere una distanza minima di 4 m dalle aree poco sensibili all’inquinamento delle acque, di 10 m dalle aree mediamente sensibili e di 20 m dalle aree molto sensibili (verificare legislazione locale);
Se l’area non è attrezzata: mantenere una distanza minima di 20 m dai corpi idrici se si lavora su suolo biologicamente attivo (Fig. 56). Evitare suoli molto permeabili o sovrastanti falde acquifere. Non riempire l’irroratrice su suoli sensibili all’erosione e/o su pendii rivolti verso aree sensibili;

Fig. 56 – Quando si prepara la miscela fitoiatrica è necessario operare almeno ad una distanza di 20 metri dai corpi idrici.
Se la preparazione avviene direttamente in campo: adottare le stesse indicazioni descritte per le aree non attrezzate.
Evitare di effettuare le riparazioni urgenti dell’irroratrice nelle aree prossime ai corpi idrici (vedi indicazione 85).
72. Non realizzare le nuove aree per la preparazione della miscela ed il riempimento dell’irratoratrice in prossimità di zone sensibili all’inquinamento delle acque.
Vedi indicazione 71 per i dettagli.

73. Non effettuare mai il riempimento dell’irratoratrice direttamente dai pozzi (Fig. 57)

Fig. 57 – Prelevare l’acqua direttamente da un pozzo (o da un corso d’acqua superficiale) durante il riempimento dell’irratoratrice può determinare inquinamento delle acque

Il riempimento dell’irratoratrice con l’acqua della rete idrica o di pozzi può essere effettuato soltanto se si impiegano adeguati accorgimenti per evitare di contaminare le fonti di acqua con gli agrofarmaci. Utilizzare tecniche che impediscono il contatto diretto tra l’acqua pulita e la miscela che si sta preparando:
- un serbatoio dell’acqua intermedio per stoccare l’acqua necessaria al riempimento dell’irratoratrice;
- assicurare che vi sia dello spazio (aria) tra il tubo di riempimento ed il livello della miscela in corso di preparazione.

74. Evitare di effettuare il riempimento dell’irratoratrice direttamente dai corsi d’acqua.
Il riempimento dell’irratoratrice con l’acqua della rete idrica o di pozzi può essere effettuato soltanto se si impiegano adeguati accorgimenti per evitare di contaminare le fonti di acqua con gli agrofarmaci.
Assicurarsi che la miscela fitoioatrica non possa essere risucchiata nei condotti di alimentazione dell’acqua pulita. Non impiegare la pompa dell’irratoratrice per effettuare il riempimento.
Utilizzare tecniche che impediscono il ritorno della miscela fitoioatrica nei corpi idrici:
- un serbatoio dell’acqua intermedio per stoccare l’acqua necessaria al riempimento dell’irratoratrice (Fig. 58 e Fig. 59);
- assicurare che vi sia dello spazio (aria) tra il tubo di riempimento ed il livello della miscela in corso di preparazione.

Oppure impiegare altri metodi che impediscono la contaminazione da agrofarmaci dei corpi idrici.

Fig. 58 – Corretto riempimento del serbatoio dell’irratoratrice (foto ISK).

Fig. 59 – Schema dell’impiego di un serbatoio dell’acqua intermedio per lo stoccaggio dell’acqua necessaria al riempimento dell’irratoratrice.

75. **Prevenire la contaminazione dell’area destinata al riempimento dell’irratoratrice.**

Utilizzare appositi taglierini (cutters) per rimuovere le linguette di protezione dei flaconi (Fig. 60). Per ulteriori dettagli sul risciacquo e smaltimento delle linguette vedi anche l’indicazione 82. Utilizzare confezioni di dimensione adeguata per ridurre la necessità di misurare l’esatta quantità di agrofarmaco e preferire i contenitori dotati di ampia apertura (45 o 63 mm) che riducono i rischi di schizzi nella fase di svuotamento.
Fig. 60 – Rimozione in sicurezza della linguetta di protezione dei flaconi di fitofarmaci con l’impiego di un apposito taglierino (cutter).

Assicurarsi che la superficie pavimentata sia impermeabile e dotata di pozzetto per la raccolta di eventuali perdite. Raccogliere l’acqua contaminata da agrofarmaci per utilizzarla immediatamente nella fase di distribuzione o per avviarla allo smaltimento. Non lasciare mai schizzi e perdite sulla superficie dell’area attrezzata. Se appositamente realizzati e approvati, possono essere utilizzati come aree per il riempimento anche sistemi con una matrice biologica attiva (es. biobed) sui quali possa essere sistemata la macchina irroratrice. Tenere l’area fuori dalla portata delle persone non autorizzate e dei bambini.

In alternativa utilizzare teli di plastica per raccogliere schizzi e perdite (Fig. 61). Particolari precauzioni devono essere adottate quando si opera su suoli permeabili o in prossimità di corpi idrici, o condutture fognarie.
Fig. 61 – Esempio di soluzione atta ad evitare possibili fonti di inquinamento puntiforme durante la preparazione della miscela fitoiotrica (Foto Harper Adams).

76. **Effettuare le operazioni di preparazione della miscela, riempimento dell’irroratrice, risciacquo dei contenitori da una postazione stabile e sicura.**

Inserire l’agrofarmaco nell’irroratrice operando da una posizione stabile e sicura. Assicurarsi che l’operatore non debba arrampicarsi o allungarsi per trasportare i contenitori di agrofarmaci dal magazzino all’irroratrice. Le aperture per il riempimento del serbatoio o i dispositivi per il riempimento (pre-miscelatori) devono trovarsi a portata di mano dell’operatore e ad altezza della vita in modo tale che egli possa versarvi da terra gli agrofarmaci in condizioni di sicurezza, senza provocare schizzi e perdite. Le piattaforme sopraelevate presenti sulle irroratrici devono essere altrettanto sicure per l’operatore e non presentare rischi per l’ambiente. Utilizzare gradini/piattaforme non scivolosi e non assorbenti. Utilizzare teli di plastica o aree attrezzate per poter raccogliere gli eventuali schizzi/perdite ed avviarli allo smaltimento.

77. **Effettuare le operazioni di preparazione della miscela, riempimento dell’irroratrice e risciacquo dei contenitori impiegando gli appositi dispositivi pre-miscelatori (Fig. 62).**

Preferire i dispositivi pre-miscelatori che consentono all’operatore di lavorare da terra, senza doversi arrampicare sul serbatoio della macchina irroratrice (Fig. 63). Se il peso del contenitore richiede l’ausilio di mezzi per il sollevamento, questi requisiti possono essere riportati sull’etichetta dell’agrofarmaco.

I pre-miscelatori possono essere sia montati sull’irroratrice ed alimentati dalla pompa della macchina, sia indipendenti e alimentati dalla rete idrica aziendale (Fig. 64).
Fig. 62 – Il serbatoio premiscelatore consente l’aspirazione dei formulati, il corretto dosaggio, la premiscelazione del prodotto, l’introduzione del prodotto nel serbatoio principale, il lavaggio dei contenitori vuoti di agrofarmaci.

Fig. 63 - Preparazione della miscela fitoiatrica in modo non sicuro (Foto UPC).

Fig. 64 – I premiscelatori possono essere montati direttamente sull’irrornatrice (sinistra) oppure indipendenti (destra) ed alimentati direttamente dalla rete idrica dell’acquedotto.
I Costruttori di macchine irroratrici dovrebbero fornire un manuale d’uso per l’agricoltore con le procedure da seguire per l’impiego di questi dispositivi (secondo quanto previsto nella Norma ISO 21278-1&2). L’agricoltore dovrebbe verificare il corretto funzionamento di tali dispositivi durante le fasi di introduzione dell’agrofarmaco e di premiscelazione.

78. **Non danneggiare i contenitori di agrofarmaci durante le operazioni di apertura degli stessi.**

Utilizzare un apposito coltello per aprire sacchi e cartoni avendo la precauzione di evitare fuoriuscite di prodotto; utilizzare gli appositi strumenti per aprire tappi e linguette dei flaconi (per queste ultime usare l’apposito taglierino). Vedi anche l’indicazione 82 per lo smaltimento di coperchi e linguette.

79. **Utilizzare gli appositi misurini per il dosaggio quando necessario (Fig. 65).**

Se è necessario impiegare piccoli quantitativi di prodotto occorre utilizzare gli appositi misurini che devono essere risciacquati subito dopo nel pre-miscelatore o nell’apertura di riempimento del serbatoio (filtro a cestello). Identificare i misurini usati per i diversi tipi di agrofarmaco.

![Fig. 65 – Utilizzo di adeguata strumentazione per il dosaggio dell’agrofarmaco.](image)

80. **Chiudere immediatamente dopo l’uso i contenitori di agrofarmaci non ancora vuoti.**

Disporre i contenitori usati parzialmente con le chiusure verso l’alto con i tappi ben chiusi ed in posizione stabile affinché non si verifichino perdite.
81. Evitare di generare nuvole di polvere, schizzi e sversamenti di prodotto durante la fase di riempimento dell’irroratrice (Fig. 66).

Operare sempre sopravento quando si manipolano le polveri ed evitare di manipolarle in condizioni di vento.

Fig. 66 – Esempio di riempimento non corretto dell’irroratrice (Foto UPC)

82. Risciacquare immediatamente i contenitori di agrofarmaci vuoti ed i relativi tappi, aggiungendo l’acqua di lavaggio alla miscela fitoieratica da distribuire.

I piccoli contenitori vuoti devono essere risciacquati con acqua pulita in modo tale che possano essere smaltiti secondo le disposizioni vigenti.

[1] Utilizzare gli ugelli lavabarattoli presenti all’interno dei pre-miscelatori (vedi l’indicazione 77) o nel filtro a cestello posizionato all’interno dell’apertura principale del serbatoio dell’irroratrice (Fig. 67). I Costruttori dovranno garantire per i dispostivi nuovi di fabbrica che il residuo di prodotto nel contenitore non superi lo 0.1% del quantitativo iniziale.

Oppure

Controllare in etichetta se per il singolo prodotto sono richieste procedure di lavaggio speciali. Le linguette ed i tappi contaminati con l’agrofarmaco devono essere risciacquati. Le linguette pulite devono essere inserite nel contenitore risciacquato, i tappi riavvittati sui rispettivi flaconi, che devono essere riposti con le chiusure verso l’alto e, se necessario, nei loro imballaggi originali. Controllare la sezione “Gestione dei prodotti reflui del trattamento” per ulteriori dettagli sullo smaltimento. I contenitori vuoti ed i relativi imballaggi devono essere riposti nel magazzino o in cassonetti dedicati per essere poi consegnati ai centri di raccolta ed avviati allo smaltimento secondo le disposizioni vigenti.
contenitori monouso devo essere resi inservibili per il riutilizzo praticando un foro sul fondo.

Sul premiscelatore

Indipendente

Sull’apertura di riempimento del serbatoio dell’irroratrice

Fig. 67 – Sistemi per il lavaggio dei contenitori vuoti degli agrofarmaci. Un corretto lavaggio meccanico dovrebbe seguire le seguenti indicazioni: portata acqua minima pari a 4.5 l/mi; pressione pari a 6 bar; tempo di lavaggio di almeno 30 secondi; tempo di sgocciolamento di almeno 60 secondi

83. Inserire il prodotto fitosanitario nel serbatoio principale della macchina quando quest’ultimo è riempito per la metà del volume che si deve distribuire con acqua.

Seguire le indicazioni riportate in etichetta. Tipicamente, gli agrofarmaci non devono mai essere inseriti nel serbatoio dell’irroratrice vuoto. Immettere il prodotto quando almeno metà del serbatoio è pieno d’acqua in modo che il prodotto si distribuisca efficacemente sollevando e si formi una miscela omogenea (Fig. 68). Seguire le indicazioni in etichetta circa il livello di agitazione, la sequenza di immissione dei prodotti quando si preparano le miscele con più agrofarmaci ed il tempo entro il quale la miscela preparata deve essere distribuita. Le etichette possono fornire indicazioni specifiche per l’uso di microgranuli idrodispersibili, polveri e sacchetti idrosolubili. Evitare la sedimentazione dei prodotti nel serbatoio
dell’irroratrice. Vedi anche indicazione 66 riguardo alla formazione di schiuma ed al riempimento eccessivo del serbatoio.

Fig. 68 – Immettere il fitofarmaco quando almeno metà del serbatoio è pieno d’acqua in modo che il prodotto si distribuisca efficacemente e si formi una miscela omogenea.

84. **Utilizzare soltanto miscele di prodotti fitosanitari autorizzate**

Controllare l’etichetta o consultare un esperto e verificare la compatibilità di additivi/coadiuvanti eventualmente utilizzati. L’impiego di miscele non autorizzate o fra prodotti non compatibili può essere illegale e può causare reazioni chimico-fisiche tali da impedirne la distribuzione in condizioni di sicurezza. Inoltre vi è maggiore probabilità di avere residui pericolosi da smaltire, legati anche a fenomeni di sedimentazione e intasamento all’interno dell’irroratrice.
Fase 4: Durante l’esecuzione del trattamento fitoiottrico

Principi generali

- Garantire la sicurezza dell’operatore e delle persone presenti in prossimità dell’area trattata;
- Verificare che non vi siano gocciolamenti o perdite dalla macchina e, nel caso, intervenire immediatamente;
- Non trattare mai direttamente su pozzi, corpi idrici o superfici impermeabili;
- Evitare di generare deriva;
- Rispettare le buffer zones;
- Evitare di effettuare il trattamento se le condizioni meteo o quelle del suolo sono favorevoli alla produzione di inquinamento puntiforme (es. terreno gelato).

Se la fase preliminare all’esecuzione del trattamento è stata eseguita correttamente, la fase di distribuzione in campo della miscela fitoiottrica non dovrebbe comportare gravi rischi di inquinamento puntiforme. Una buona distribuzione mira ad ottenere la massima efficacia biologica e la minima esposizione agli agrofarmaci per l’uomo e per l’ambiente. È un compromesso tra diversi aspetti quali:

- soglie di danno economico;
- gestione dei protocolli di lotta integrata e prevenzione dei fenomeni di resistenza dei patogeni;
- gestione del rischio ambientale;
- tempestività del trattamento (efficacia biologica e condizioni climatiche) e sequenza dei trattamenti;
- adeguata scelta del principio attivo e della relativa dose d’impiego;
- tempi di carenza.

I fenomeni di contaminazione diretta dell’ambiente durante la fase di distribuzione della miscela fitoiatrica sono principalmente legati all’utilizzo di macchine obsolete, sulle quali non è stata eseguita la necessaria manutenzione, oppure sono dovuti a comportamenti errati (es. trattamento diretto di corpi idrici, aree vulnerabili, ecc.)

La deriva del prodotto fitoiatrico è un tipico fenomeno di inquinamento diffuso, che può comunque costituire una fonte di contaminazione rilevante per i corsi d’acqua, ad esempio in frutteti e vigneti situati in prossimità di corpi idrici. I fenomeni di ruscellamento possono essere in buona parte prevenuti nella fase di pianificazione del trattamento, anche attraverso l’adozione di strisce di terreno inerbite intorno ai margini del campo trattato.

Per quanto riguarda il livello di polverizzazione del liquido erogato, le gocce fini non solo sono più soggette alla deriva ma tendono anche a contaminare maggiormente la superficie esterna della macchina irroratrice. Questo fenomeno, se non gestito correttamente, può quindi comportare un maggiore rischio di inquinamento puntiforme.

CONTAMINAZIONE DIRETTA

85. **Effettuare immediatamente gli interventi di riparazione che si rendano necessari sull’irroratrice per evitare perdite, gocciolamenti, ecc.**

Interrompere l’erogazione e provvedere immediatamente alla risoluzione del problema se si verificano fenomeni di gocciolamento dalle tubazioni/ugelli o di intasamento degli ugelli. Effettuare le riparazioni avendo cura di indossare gli adeguati DPI e limitare al minimo le perdite. Seguire le istruzioni fornite dal Costruttore. Rispettare le buffer zones e le aree sensibili all’inquinamento. Se non si è sicuri considerare l’indicazione 71 “Non preparare la miscela fitoiatrica nè riempire l’irroratrice con il prodotto fitosanitario in prossimità di un corso d’acqua o di un pozzo” come riferimento anche per le operazioni di riparazione rapida dell’attrezzatura.

Vedi anche indicazione 62 per la prevenzione dei problemi.

86. **Non irrorare su corsi d’acqua, pozzi, fontane, canali di scolo e superfici asfaltate** (Fig. 69).

Regolare opportunamente la larghezza di lavoro della barra irroratrice. Chiudere opportunamente i singoli ugelli o le sezioni di barra. Solo alcuni agrofarmaci specifici sono
esenti da questa regola, ad esempio quelli impiegati per contrastare le malerbe acquatiche o utilizzati in risaia. Tenere conto anche delle aree di rispetto (buffer zones) se necessario.

Fig. 69 – E’ sempre necessario interrompere l’irrorazione in fase di svolta

87. **Evitare di contaminare il suolo in prossimità dei pozzi.**

Tenere conto delle aree di rispetto o dove non è consentito irrorare intorno ai pozzi. Verificare la legislazione locale e le Buone Pratiche Agricole. Preferire l’impiego di ugelli a polverizzazione medio-grossolana e tenere conto della velocità (Tab. 5) e della direzione del vento. Evitare le situazioni in cui un’irrаторatrice piena di miscela fitoioatrica rimanga ferma in prossimità di un’area vulnerabile per un periodo di tempo prolungato. Controllare i requisiti specifici del prodotto. Ubicare i depositi di agrofarmaci a distanza di sicurezza in modo che non possano contaminare l’acqua potabile.

Osservare le indicazioni specifiche

71 – Non preparare la miscela fitoioatrica né riempire l’irrаторatrice con il prodotto fitosanitario in prossimità di un corso d’acqua o di un pozzo

85 – Effettuare immediatamente gli interventi di riparazione che si rendano necessari sull’irrаторatrice per evitare perdite, gocciolamenti, ecc.

88 – Non effettuare la distribuzione della miscela fitoioatrica con l’irrаторatrice ferma

Controllare che i pozzi siano coperti e che le loro strutture siano integre (Fig. 70).
Fig. 70 – Pozzo non adeguatamente protetto (Foto ISK)

<table>
<thead>
<tr>
<th>Velocità del vento (m/s)</th>
<th>Segni visibili</th>
<th>Come operare</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5</td>
<td>il fumo sale verticalmente</td>
<td>evitare l’irrorazione in giornate calde e asolute</td>
</tr>
<tr>
<td>0,5-1</td>
<td>leggero movimento d’aria</td>
<td>evitare l’irrorazione in giornate calde e asolute</td>
</tr>
<tr>
<td>1-2</td>
<td>fruscio delle foglie</td>
<td>ideali condizioni per l’irrorazione</td>
</tr>
<tr>
<td>2-2,5</td>
<td>foglie e ramoscelli in costante movimento</td>
<td>evitare di distribuire erbicidi</td>
</tr>
<tr>
<td>2,5-4</td>
<td>movimento piccoli rami sollevamento polvere</td>
<td>evitare l’irrorazione</td>
</tr>
</tbody>
</table>

Tab. 5 – Alcune indicazioni su come operare con diverse velocità del vento e riconoscere visivamente queste ultime.

88. **Non effettuare la distribuzione della miscela fitoioatra con l’irroratrice ferma (Fig. 71)**

Attivare l’erogazione della miscela fitoioatra quando l’irroratrice è ferma - per esempio per riempire tutte le tubazioni che alimentano gli ugelli – comporta un sovradosaggio di prodotto nell’area dove avviene questa operazione, quindi un maggiore rischio di inquinamento del suolo e delle acque.
Impiegare sistemi di ricircolo della miscela sulla barra oppure effettuare il riempimento delle tubazioni avanzando con l’irroratrice, accettare che vi siano delle aree “sotto trattate” del campo all’inizio della fase di distribuzione ed utilizzare quelle stesse aree per effettuare il lavaggio interno dell’irroratrice a fine trattamento, senza incorrere in rischi di sovradosaggio del prodotto (Fig. 55).

Fig. 71 – Attivare l’erogazione della miscela fitoiatrica quando l’irroratrice è ferma comporta un elevato rischio di inquinamento del suolo e delle acque (foto UPC).

DERIVA

89. Non provocare fenomeni di deriva

Non generare deriva (Fig. 72, Fig. 73 e Fig. 74).
Per approfondimenti, consultare il capitolo sulle buone pratiche per contenere la deriva messe a punto nell’ambito del progetto Topps Prowadis.

Verificare la legislazione locale e l’etichetta dei prodotti per i requisiti specifici.
Regolare il livello di polverizzazione delle gocce (Tab. 6) in funzione della temperatura e delle condizioni del vento (gocce più grandi in presenza di elevate temperature e di brezze).
Evitare di irrorare quando si verifichino moti convettivi dell’aria (es. nei caldi pomeriggi estivi). Se possibile rimandare il trattamento alla serata (più fresca).
Fig. 72 – Come si genera la deriva del prodotto fitoiatrico.

Fig. 73 – Distribuzione con evidente deriva al di sopra della vegetazione da trattare (Foto UPC).
Fig. 74 – Il prodotto fitoiatrico che oltrepassa la vegetazione (deriva) può andare a inquinare una coltura sensibile o un pascolo.

<table>
<thead>
<tr>
<th>grado di polverizzazione</th>
<th>VMD, µm</th>
<th>gocce < 141 µm, % in volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>molto fine</td>
<td><182</td>
<td>>57</td>
</tr>
<tr>
<td>fine</td>
<td>183-280</td>
<td>20-57</td>
</tr>
<tr>
<td>medio</td>
<td>281-429</td>
<td>6-20</td>
</tr>
<tr>
<td>grossolano</td>
<td>430-531</td>
<td>3-6</td>
</tr>
<tr>
<td>molto grossolano</td>
<td>532-655</td>
<td><3</td>
</tr>
<tr>
<td>estremamente grossolano</td>
<td>>655</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 6 – Grado di polverizzazione delle gocce e rischio deriva.

Richiedere sempre il parere di un esperto se capita di dover eseguire il trattamento comunque, anche in condizioni avverse.

Regolare opportunamente i parametri operativi dell’irroratrice (ridurre l’altezza della barra (Fig. 75), la pressione, la velocità di avanzamento e, per gli atomizzatori, la portata del ventilatore (Fig. 76).

Vedi anche l’indicazione 91.
Fig. 75 – Ridurre l’altezza di lavoro diminuisce il rischio deriva (prove DISAFA-mecanica).

Fig. 76 - Ridurre la portata del ventilatore consente di ridurre l’entità della deriva fino ad oltre il 40% (prove DISAFA meccanica su Golden delicious)

90. **Non irrorare le fasce di rispetto.**
L’impiego di agrofarmaci può non essere consentito in aree considerate “sensibili” all’inquinamento ambientale, in particolare delle acque, o per la salute delle persone (Fig. 77, Fig. 78). Queste aree possono quindi trovarsi in prossimità di riserve protette per la flora/fauna, di scuole e ospedali, di corpi idrici. Le Autorità preposte stabiliscono quindi quando e come gli agrofarmaci possono essere impiegati in tali contesti. Occorre seguire le indicazioni riportate in etichetta e le prescrizioni degli esperti. Le aree di rispetto e i corsi d’acqua non devono essere mai irrorati. Nel dubbio, prevedere sempre una distanza di
rispetto di 2 metri per le barre e di 5 m per gli atomizzatori da corsi d’acqua, pozzi, ed aree sensibili in generale.

Fig. 77 - Le zone di rispetto (buffer zones) servono a preservare colture sensibili o corsi d’acqua dal rischio di essere contaminati dalla miscela fitoïatrica che si sta distribuendo.

Fig. 78 - Esempio di fascia di rispetto (Foto E. Nilsson – Visavi).

RUSCELLAMENTO

91. Evitare di effettuare i trattamenti fitoïatrici se vi sono rischi di contaminazione dei sistemi di drenaggio.

92. Non provocare fenomeni di ruscellamento
Non provocare fenomeni di gocciolamento/ruscellamento dal bersaglio della miscela fitoïatrica (Fig. 79) che possono derivare dall’uso di gocce troppo grandi, di volumi di distribuzione eccessivi o dalla distanza troppo breve tra ugello e bersaglio.
Consulta anche le buone pratiche agricole per contenere il ruscellamento messe a punto nell’ambito del progetto Topps Prowadis (www.topps.unito.it).
Fig. 79 - Effetto del ruscellamento sul terreno (foto F. Vidotto - Disafa).
Fase 5: al termine del trattamento

Principi generali
- garantire che il lavaggio interno ed esterno dell’irroratrice avvenga lontano da aree vulnerabili all’inquinamento;
- eseguire le operazioni di lavaggio dell’attrezzatura in più fasi;
- ricoverare e mantenere l’irroratrice in un luogo sicuro per le persone e per l’ambiente.

L’aspetto principale a fine trattamento è la gestione della frazione di miscela fitoziatrice residua che comprende:

Interno dell’irroratrice:
- miscela residua nel serbatoio (surplus rispetto a quella necessaria per coprire la superficie oggetto del trattamento);
- miscela tecnicamente non distribuibile (volume residuo totale nell’irroratrice = volume diluibile + volume non diluibile);
- eventuali depositi di miscela negli angoli morti del serbatoio;
- depositi di prodotto all’interno dei filtri.

Esterno dell’irroratrice:
- frazione di miscela fitoziatrice accumulatasi sulla superficie esterna della macchina.

La quantità di miscela residua nel serbatoio (surplus), può essere considerevolmente limitata se si pianifica in modo preciso il volume di distribuzione e si adottano adeguate procedure di regolazione dell’irroratrice. Occasionalmente, il fenomeno può verificarsi per eventi imprevisti (es. sospensione del trattamento per un improvviso cambiamento delle condizioni meteo).

Riguardo alla miscela non distribuibile valgono le considerazioni esposte in precedenza per la fase preliminare all’esecuzione del trattamento. Si consiglia di chiedere al proprio...
rivenditore, per i diversi modelli di macchine irroratrici, quale sia il volume residuo non distribuibile e, qualora si intenda acquistare una nuova macchina irroratrice, di considerare questo parametro come elemento decisivo per la scelta. Conoscere l’entità del volume residuo dell’irroratrice permette, inoltre, di avere un’indicazione circa la quantità di acqua pulita necessaria per ottenere un adeguato livello di pulizia della macchina, in maniera tale che siano scongiurati problemi di incompatibilità tra prodotti diversi utilizzati in trattamenti successivi.

La rimozione dei residui di miscela fitoindicativa che si accumula negli angoli morti del serbatoio, in particolare quando questi ultimi non sono dotati di un idoneo sistema di agitazione, è possibile se il serbatoio stesso è dotato di ugelli lava serbatoio.

Quando si utilizzano miscele di prodotti diversi è sempre importante seguire le indicazioni in etichetta per effettuare tali operazioni correttamente, sia dal punto di vista della sequenza di prodotti da introdurre nell’irroratrice, sia per quanto riguarda le modalità di preparazione della miscela. Diversamente possono formarsi concrezioni ed accumularsi depositi elevati per esempio sulle superfici dei filtri. Pertanto occorre ispezionare regolarmente i filtri e verificare la pulizia.

Per quanto riguarda la contaminazione esterna dell’irroratrice, si può dire, in generale, che essa è maggiore per gli atomizzatori e per le barre irroratrici equipaggiate con manica d’aria. Poiché le gocce erogate devono aderire alla vegetazione trattata, anche quelle che si depositano sull’irroratrice aderiscono fortemente alla superficie della macchina e, quindi, possono essere rimosse più agevolmente se si effettua la pulizia immediatamente dopo l’esecuzione del trattamento; diversamente potrà occorrere un maggior quantitativo di acqua pulita per decontaminare l’attrezzatura.

La regolare pulizia dell’irroratrice ed il suo ricovero corretto contribuiranno alla durata della macchina.

PULIZIA DELL’IRRORATRICE

93. **Effettuare la pulizia esterna dell’irroratrice.**

Non rimuovere i depositi esterni accumulatisi sull’irroratrice subito dopo aver eseguito il trattamento può comportare un’elevata contaminazione dell’area dove la macchina viene ricoverata, può danneggiare parti dell’attrezzatura e può rappresentare un pericolo per le persone.

Le parti più importanti da pulire sono la barra, le parti intorno agli ugelli, il ventilatore ed i convogliatori/bocchette dell’aria, e le ruote (Fig. 81). I depositi esterni sull’irroratrice e sul trattore si accumuleranno nel tempo, soprattutto impiegando gocce più fini ed elevate alteze di lavoro della barra ed operando su terreni fangosi. È buona pratica rimuovere questi depositi in campo, al termine della giornata di lavoro, prima di immettersi con
l’attrezzatura sulla rete viaria pubblica, utilizzando una lancia a mano alimentata con acqua pulita. La frequenza della pulizia esterna della irroratrice dipende dal livello di contaminazione prodotta che, a sua volta, è legato a:
- la frequenza dei trattamenti ed il periodo di picco degli stessi
- il tipo di coltura/e;
- i prodotti fitosanitari utilizzati;
- dove viene ricoverata l’irroratrice (all’aperto, piazzola attrezzata, sotto una tettoia);
- il livello di polverizzazione delle gocce normalmente impiegato;
- il tipo di irroratrice (es. con o senza ventilatore).
In generale effettuare la pulizia esterna:
- seguendo le indicazioni riportate in etichetta, se presenti;
- almeno al termine di ogni periodo di utilizzo intensivo;
- al termine di ogni giorno di lavoro quando si prevede successivamente un lungo periodo di inutilizzo della macchina;
- secondo le necessità dell’operatore.

Fig. 80 - Non rimuovere i depositi esterni accumulatisi sull’irroratrice subito dopo aver eseguito il trattamento può comportare un’elevata contaminazione dell’area dove la macchina viene ricoverata, può danneggiare parti dell’attrezzatura e può rappresentare un pericolo per le persone.
Fig. 81 – Imbrattamento di differenti parti della macchina irroratrice in funzione della tipologia di ugello e dell’inclinazione del flusso d’aria (prove DISAFA meccanica).

[1] Area per il lavaggio in campo: Se l’irroratrice è equipaggiata con un dispositivo per effettuare il lavaggio esterno in campo, operare nel campo (Fig. 82). Stabilire in anticipo le aree adatte per effettuare il lavaggio esterno in campo seguendo lo stesso principio dell’indicazione 71 – “Non preparare la miscela fitoiatrica nè riempire l’irroratrice con il prodotto fitosanitario in prossimità di un corso d’acqua o di un pozzo” (Fig. 83). Non ripetere le operazioni di lavaggio esterno dell’irroratrice sempre nella medesima area del campo. Seguire le istruzioni del Costruttore dell’irroratrice, quelle riportate in etichetta e quelle relative ad eventuali prodotti impiegati per effettuare la pulizia. Utilizzare adeguati DPI.

Fig. 82 – Lavaggio esterno della macchina irroratrice in campo al termine del trattamento utilizzando una lancia e l’acqua del serbatoio lavaimpianto.
Fig. 83 – Non effettuare il lavaggio in campo in prossimità di aree sensibili, corsi d’acqua o pozzi.

[2] **Area per il lavaggio in azienda:** assicurarsi che l’area sia impermeabile ed attrezzata per raccogliere le acque contaminate da agrofarmaci, al fine di poterle riutilizzare per i trattamenti successivi (Fig. 84). Evitare di lasciare liquido contaminato sulla superficie dell’area attrezzata al termine delle operazioni di lavaggio.

Se appositamente realizzati e autorizzati, possono essere utilizzati come aree per il lavaggio anche i biobed sui quali possa essere sistemata la macchina irroratrice.

Tenere l’area fuori dalla portata delle persone non autorizzate e dei bambini.

Fig. 84 – Esempio di lavaggio esterno di un’irroratrice per colture arboree su area attrezzata in azienda.
94. **Utilizzare la miscela residua nel serbatoio (distribuendola in campo dopo averla diluita con acqua).**

[A] Se possibile, utilizzare la miscela fitoiatrica avanzata nel serbatoio all’interno dell’area trattata, distribuendola su una zona non ancora irrorata o trattata con una dose ridotta rispetto a quella piena. Stabilire in anticipo un’area di questo tipo. Non riutilizzare sempre la stessa area. Se si cambiano i parametri operativi dell’irroratrice, evitare di utilizzare volumi di distribuzione troppo elevati che comportino il dilavamento della miscela fitoiatrica distribuita in precedenza sul bersaglio.

[B] Per quantitativi di miscela residua avanzata nel serbatoio considerevoli, che eccedano la possibilità di essere distribuiti subito in campo, prevederne il riutilizzo per il trattamento successivo, preferibilmente entro 24 ore. Seguire le istruzioni del Costruttore e le indicazioni riportate in etichetta:

1. Lasciare la miscela avanzata a fine trattamento nel serbatoio dell’irroratrice se ciò non comporta rischi di intasamento dei filtri o degli ugelli o di successivo malfunzionamento della macchina.

2. Stoccare i quantitativi di miscela avanzata a fine trattamento in contenitori a tenuta, identificati con un’etichetta recante il tipo di prodotto e la coltura su cui deve essere distribuito.

L’applicazione in campo della miscela avanzata non deve avvenire su colture per le quali il prodotto in uso non sia registrato e non deve comportare il superamento delle dosi massime consentite.
95. **Effettuare la pulizia interna dell’irroratrice quando opportuno.**

Una frequenza eccessiva dei lavaggi interni dell’irroratrice può generare volumi molto elevati di reflui; se la pulizia interna non viene mai eseguita, d’altra parte, si possono verificare danni ai componenti della macchina, intasamento degli ugelli ed altri malfunzionamenti. Organizzare un calendario per il lavaggio dell’irroratrice in modo da contenere i volumi di reflui da gestire. Seguire le istruzioni del Costruttore e le indicazioni riportate in etichetta su come effettuare la pulizia. Vedi anche l’indicazione 98 per ulteriori dettagli.

Il lavaggio interno deve essere effettuato:
- quando si cambia coltura e/o se l’agrofarmaco impiegato per la coltura precedente non è registrato per la successiva coltura che si va a trattare o può dare problemi di fitotossicità;
- se la miscela residua avanzata nell’irroratrice comporta rischi di intasamento dei filtri e degli ugelli o di altri malfunzionamenti della macchina (vedi anche indicazione 94).

Pulire sempre l’irroratrice al termine dell’ultimo trattamento, quando si prevede un successivo lungo periodo di inattività della macchina.

96. **Effettuare il lavaggio dell’irroratrice con il volume d’acqua minimo necessario.**

Una pulizia troppo frequente e procedure di lavaggio inefficienti posso generare elevati volumi di reflui (vedi indicazioni 93 e 95).

Per la pulizia interna: la limitazione dei reflui dovrebbe essere fatta scegliendo un’irroratrice con un minimo volume residuo non distribuibile (indicazione 54) NON impiegando delle procedure di lavaggio poco efficaci.

Per la pulizia esterna: Privilegiare l’impiego di gocce non troppo fini. Le lance a mano e le idropulitrici generalmente forniscono risultati migliori rispetto alle spazzole (Fig. 86 e Tab. 7). Evitare di rimuovere il grasso dai punti di articolazione della macchina.

Per la pulizia interna & esterna: Utilizzare prodotti per la pulizia dell’irroratrice registrati e biodegradabili per facilitare le operazioni.

![Fig. 86 – Differenti attrezzature per il lavaggio esterno dell’irroratrice (foto JKI).](image)
Acqua e tempo impiegati	residuo rimosso
Spazzola 160 l, 15 min | 64,0 %
Lancia 70 l, 30 min | 69,3 %
Idropulitrice 70 l, 20 min | 75,5 %

Tab. 7 - Confronto fra le differenti attrezzature per il lavaggio esterno dell’irrrotatione in termini di volume d’acqua impiegato e residuo rimosso (fonte JKI)

97. **Non effettuare la pulizia dell’irroratione in prossimità di un corpo idrico.**

L’area dove effettuare la pulizia dell’irroratione deve essere stabilita in anticipo. La distribuzione in campo della miscela diluita deve essere svolta seguendo le indicazioni riportate nella sezione “Durante l’esecuzione del trattamento”, con particolare riguardo alla linea guida 88 “Non effettuare la distribuzione della miscela fitoia trica con l’irroratione ferma”. La pulizia esterna dell’irroratione dovrà seguire quanto indicato nella linea guida 71 “Non preparare la miscela fitoia trica nè riempire l’irroratione con il prodotto fitosanitario in prossimità di un corso d’acqua o di un pozzo”. Erogare la miscela diluita attraverso gli ugelli con la macchina ferma su un’area sia pure attrezzata non è una pratica raccomandabile. Se eseguita, dovrebbero per esem pio essere utilizzati ugelli molto grandi (es. quelli impiegati per i fertilizzanti liquidi).

98. **Ripetere le operazioni di lavaggio dell’irroratione più volte.**

Effettuare il lavaggio interno dell’irroratione in più step (fig. 87), impiegando ogni volta volumi d’acqua ridotti, è una tecnica più efficace che non effettuare il lavaggio in una volta sola con un volume d’acqua maggiore.
Ripetere il lavaggio interno dell’irroratione almeno tre volte.
Fig. 87 - Ottimizzazione del lavaggio interno mediante successivi risciacqui ottenuti fracionando l’acqua pulita del lavaimpianto (prove DISAFA meccanica)

Esempio di come dovrebbe essere condotto il lavaggio interno:

- Tenere attivati gli ugelli fino a che la pompa non aspira aria
- Diluire la miscela residua nella macchina con un volume d’acqua pulita pari ad almeno 5 volte il residuo stesso
- Far circolare il residuo diluito in tutte le parti del circuito idraulico, attivando opportunamente tutte le funzioni, senza attivare gli ugelli.
- Attivare gli ugelli ed irrorare la miscela diluita in campo fino a che la pompa non aspira aria (avendo cura di evitare sovradosaggi sulla coltura)
- Ripetere l’operazione due o più volte come richiesto
- Pulire i filtri
- Raccogliere il residuo di miscela diluita che al termine rimane ancora sul fondo del serbatoio (volume non aspirabile dalla pompa) rispettando le prescrizioni per il riutilizzo nel trattamento successivo.

99. Non smaltire la miscela residua nell’irroratrice direttamente nel suolo.

Tenersi lontani dalle aree sensibili all’inquinamento delle acque (Fig. 88). Non scaricare mai la miscela avanzata nell’irroratrice dal rubinetto di scarico del serbatoio (Fig. 89) se non su aree attrezzate per la raccolta del liquido contenente agrofarmaci (Fig. 90 e Fig. 91).
In campo:

[1] Se il volume residuo nell’irroratrice è diluito secondo una procedura di lavaggio corretta, lo svuotamento del residuo finale di miscela diluita rimasta sul fondo del serbatoio attraverso il rubinetto di scarico del serbatoio stesso durante l’avanzamento della macchina può, in alcuni casi, essere consentito.

[2] Lo smaltimento sul terreno del residuo di miscela diluito sul fondo del serbatoio con l’irroratrice ferma è consentito soltanto se la diluizione di tale residuo è pari ad almeno 1/100 di quella originale e se si è ad almeno 50 m di distanza dai corpi idrici. La procedura di lavaggio impiegata deve indicare che tale diluizione può essere raggiunta nella pratica.

Fig. 88 - Effettuare il lavaggio dell’irroratrice e lo smaltimento della miscela residua a fine trattamento in prossimità di un corpo idrico può determinare inquinamento delle acque.

Fig. 89 - Esempio di NON corretto smaltimento della miscela residua.
Percolazione acqua depurata nel terreno

Strato di erba
Strato di argilla (10 cm)
Paglia tritata (50%)
Torba (25%)
Terreno di superficie (25%)

Fig. 90 - Pulizia irroratrice in azienda su area attrezzata per la degradazione biologica dei reflui (biobed)

Fig. 91 – Raccolta della acque reflue del lavaggio e loro biodegradazione (biobac ®). Il contenuto delle vasche di degradazione viene monitorato e periodicamente arieggiato e rivolto e deve essere sostituito ogni circa 5 anni. Tale terreno esausto può poi essere distribuito in campo

100. Se non è possibile effettuare il lavaggio in campo (Fig. 55), convogliare le acque di lavaggio dell’irratrice in appositi serbatoi di raccolta.
Se non è possibile eseguire in campo la pulizia dell’irratoratrice, effettuarla in un’area attrezzata (Fig. 92, Fig. 93, Fig. 94) che consenta di convogliare l’acqua contaminata con gli agrofarmaci verso un serbatoio di raccolta e/o ad un sistema di trattamento (es. biofiltro). Ulteriori indicazioni per la gestione di questi reflui sono riportati nella sezione “Gestione dei prodotti reflui del trattamento”.

Fig. 92 - Area attrezzata per il lavaggio dell’irratoratrice e per il convogliamento delle acque di lavaggio in appositi serbatoi di raccolta.

Fig. 93 – Area attrezzata per il lavaggio dell’irratoratrice.
Fig. 94 – Schema di un’area smontabile attrezzata per il lavaggio dell’irroratrice e per il convogliamento delle acque di lavaggio in appositi serbatoi di raccolta.

Fig. 95 - Area smontabile attrezzata per il lavaggio dell’irroratrice e per il convogliamento delle acque di lavaggio in appositi serbatoi di raccolta (Foto PCFRUIT).

STOCCAGGIO E MANUTENZIONE

101. Utilizzare i residui di miscela fitoiodritica diluita.
L’impiego dei quantitativi di miscela fitoiodritica avanzati nell’irroratrice a fine trattamento è specificato nell’indicazione 94. L’impiego del residuo presente nell’irroratrice al termine delle operazioni di lavaggio (indicazione 98) nel campo oggetto del trattamento deve essere attentamente pianificato in modo da non superare le dosi autorizzate.
L’utilizzo di residui di miscela raccolti dall’irroratrice e/o sottoposti a trattamento di depurazione in azienda è specificato nell’indicazione 114 “Riutilizzare le frazioni di miscela diluita”.
Controllare l’etichetta del prodotto fitosanitario per istruzioni specifiche.
102. Ricoverare l’irroratrice in apposite aree di rimessaggio

Le irroratrici dopo l’uso devono essere ricoverate in luogo sicuro (Fig. 96), fuori dalla portata di persone non autorizzate ed animali, e non devono presentare rischi per la contaminazione dell’ambiente. Ricoverare le irroratrici pulite sotto un tetto, proteggendole da possibili danni da gelo, fuori dalla portata dei bambini e lontano dai magazzini di stoccaggio dei prodotti alimentari; se l’irroratrice è ricoverata all’aperto, parcheggiarla in un’area appositamente dedicata. Si tenga presente che il ricovero dell’irroratrice su un’area attrezzata scoperta comporta il rischio di dilavamento dei residui di miscela fitoiatrica depositatisi sulla superficie esterna della macchina, pertanto è necessario prevedere anche lo stoccaggio delle acque meteoriche contaminate.

Fig. 96 – Area di rimessaggio per l’irroratrice (foto ARVALIS)

103. Assicurarsi che non si verifichino perdite di prodotto durante le riparazioni dell’irroratrice

Controllare – all’acquisto - se le irroratrici nuove sono equipaggiate con i dispositivi tecnici necessari per effettuare le riparazioni di emergenza in condizioni di sicurezza (Norme di riferimento EN ISO 16119; ISO 4245-6.2). Per esempio, quando i filtri principali si intasano inaspettatamente, deve essere possibile chiudere il tubo di aspirazione e le tubazioni collegate al serbatoio per consentire la pulizia del filtro senza che vi siano perdite di prodotto.

Evitare di eseguire le riparazioni in campo ma effettuarle preferibilmente nel cortile aziendale, in un’area opportunamente attrezzata. Svuotare l’irroratrice (pompa e filtri) prima di iniziare la riparazione ed effettuare l’intervento in un’area in cui sia vietato l’accesso ai non addetti ai lavori.
Principi generali

- Evitare di produrre reflui
- Rispettare le normative vigenti a livello locale

Lo smaltimento non corretto di residui contenenti prodotti fitosanitari è una delle cause di inquinamento delle acque da agrofarmaci. Pertanto questa fase è strettamente collegata a quelle precedenti, poiché la regola generale è quella di *non produrre reflui*, e ciò avviene fin dal momento della pianificazione del trattamento.

Se capita di produrre dei reflui in forma liquida, essi, per quanto possibile, devono essere riutilizzati al più presto. Se ciò non è possibile è necessario prevedere degli adeguati sistemi di smaltimento affidabili ed economicamente sostenibili. Fra quelli che potrebbero consentire il trattamento di tali rifiuti liquidi in azienda senza comportare rischi di inquinamento delle acque vanno ricordati:

- sistemi fisico-chimici;
- sistemi di “bioremediation” (biobed, biofiltrì, sistemi di fitodegradazione, ecc.);
- sistemi ad osmosi inversa;
- sistemi fotocatalitici;
- sistemi elettrolitici.

Tipicamente, il prodotto finale di tali processi è una fase solida oppure liquida da smaltire. A seconda della legislazione vigente a livello locale dal punto di vista ambientale, tali prodotti possono essere riutilizzati in azienda oppure devono essere smaltiti come rifiuti pericolosi e ciò comporta la necessità di conferirli a ditte specializzate, autorizzate al loro smaltimento.
PREVENZIONE

104. **Minimizzare la produzione di rifiuti e di miscela residua al termine del trattamento.**
Minimizzare tutti i rifiuti ed i prodotti reflui legati agli agrofarmaci ed al loro utilizzo. Ciò dovrebbe ripercuotersi su tutte le altre fasi, principalmente:
31 – Conservare nel magazzino soltanto le quantità di agrofarmaci necessarie per l’utilizzo corrente
43 – Pianificare sempre le attività legate alla distribuzione dei prodotti fitosanitari
54 – Utilizzare irroratrici che siano in grado di rendere minimo il volume di miscela non distribuibile
61 – Utilizzare i dati della taratura e della superficie da trattare, e le indicazioni riportate in etichetta per calcolare esattamente le quantità di acqua e di agrofarmaco necessarie per l’esecuzione del trattamento
70 – Rendere minimi i residui di miscela a fine trattamento
84 – Utilizzare soltanto miscele autorizzate di prodotti fitosanitari
93 – Effettuare la pulizia esterna dell’irroratrice
94 – Utilizzare la miscela residua avanzata nel serbatoio

SMALTIMENTO DEI CONTENITORI

105. **Leggere le istruzioni riportate in etichetta per lo smaltimento delle confezioni vuote.**
Tutti i contenitori degli agrofarmaci vuoti ed i relativi imballaggi devono essere smaltiti in modo sicuro e legale. Controllare le indicazioni riportate in etichetta ed osservare che le disposizioni di legge sono diverse in ciascun Stato membro (talvolta anche in Regioni diverse dello stesso Stato). Tenere presente anche il fatto che può intercorrere un certo periodo di tempo tra il confezionamento del prodotto ed il suo utilizzo, per cui le disposizioni in materia di smaltimento possono essere variate.

106. **Non interrare e non bruciare mai i rifiuti pericolosi.**
Come regola generale le confezioni contaminate da agrofarmaci NON devono essere bruciate (Fig. 97) o interrate. Vedi l’indicazione 105 “Leggere le istruzioni riportate in etichetta per lo smaltimento delle confezioni vuote” per i casi specifici.
Fig. 97 – Non è mai consigliabile bruciare i contenitori degli agrofarmaci, un quanto le temperature di combustione sono solitamente troppo basse per consentire la completa degradazione dei residui degli agrofarmaci

PRODOTTI OBSOLETI

107. **Assicurarsi che i prodotti che sono prossimi ad essere esclusi dalla registrazione siano utilizzati entro i termini consentiti.**
Assicurarsi che gli agrofarmaci per i quali si prevede l’esclusione dalla registrazione a breve termine siano possibilmente inclusi nei piani per i trattamenti in modo tale da evitare di accumularli in magazzino oltre i termini consentiti per la loro distribuzione in campo.

108. **Stoccare gli agrofarmaci non più registrati in un’area ben identificata e protetta.**
Lo stoccaggio dei rifiuti contaminati da agrofarmaci e delle confezioni di prodotti non più utilizzabili può essere soggetto a locali disposizioni di legge specifiche. Se è consentito stoccare i rifiuti nel magazzino degli agrofarmaci, designare un’area apposita ben identificata, ad esempio con una scritta “Prodotti fitosanitari non più utilizzabili da smaltire”(Fig. 98). In alternativa, per lo stoccaggio dei rifiuti può essere utilizzato un apposito armadietto per la conservazione dei prodotti chimici, chiuso a chiave, situato a tetto in prossimità del magazzino. Lo stoccaggio dei rifiuti può anche essere soggetto a limiti di durata nel tempo e di quantità complessiva. Separare subito i rifiuti per i quali sono previsti specifici requisiti per lo smaltimento, ad esempio le confezioni contenenti prodotti tossici o molto tossici.
109. Smaltire gli agrofarmaci non più registrati secondo le disposizioni di legge.
Al momento dell’acquisto, chiedere al rivenditore se esiste il periodo massimo entro il quale l’agrofarmaco deve essere utilizzato e, in questo caso, programmare l’utilizzo entro il periodo consentito. In alternativa, rivolgersi a ditte specializzate per lo smaltimento degli agrofarmaci; le Autorità preposte (es. ARPA) possono richiedere copia della bolla di consegna e della relativa fattura.

110. Non immettere mai agrofarmaci concentrati nelle fognature o nei canali di scolo.
Le fognature ed i canali di scolo sfociano direttamente o indirettamente nei corpi idrici superficiali. Non soltanto si tratta di una pratica illegale, contribuisce anche ad un’eccessiva ed inaccettabile esposizione dell’ambiente a fenomeni di inquinamento.
Seguire Le Buone Pratiche per prevenire lo stoccaggio di prodotti obsoleti.

111. Non versare mai agrofarmaci concentrati nel terreno.
Interrare o versare prodotti concentrati nel terreno può rappresentare un grave rischio ambientale a breve e a lungo termine. Non solo è una pratica illegale, contribuisce anche ad un’eccessiva ed inaccettabile esposizione dell’ambiente a fenomeni di inquinamento.
Seguire Le Buone Pratiche per prevenire lo stoccaggio di prodotti obsoleti.

SMALTIMENTO REFLUI

112. Stoccare i residui di miscela fitoiotetrica in modo sicuro prima del loro riutilizzo, smaltimento o trattamento (es. depurazione) in azienda.
provvisti di doppia parete. Nel caso di serbatoi per il liquame, se vi è consentito stoccare tali reflui, inserirne soltanto piccole quantità e successivamente diluire fino ad un livello di efficacia biologica inferiore a quello della miscela diluita in campo, risultante dalle operazioni di lavaggio dell’irrotatrice. La responsabilità è dell’agricoltore.

113. **Non versare mai liquidi contenenti agrofarmaci direttamente o indirettamente (es. attraverso i canali di scolo, Fig. 99 e Fig. 100) nei corpi idrici.**
Questo vale sia per le acque superficiali che per quelle sotterranee.

![Fig. 99 – Acque di lavaggio immesse direttamente nella rete fognaria.](image1)

![Fig. 100 - Esempio di NON corretto smaltimento della miscela residua e dell’acqua di lavaggio tramite tombino collegato alla rete fognaria.](image2)
114. **Riutilizzare le frazioni di miscela diluita.**

Le frazioni di miscela da smaltire sono quelle che non si può evitare di produrre nelle fasi precedentemente descritte e non sono legate ad uno specifico trattamento. Se legalmente consentito, le frazioni di miscela diluita possono essere riutilizzate in diverse fasi in ben determinate condizioni. Ad esempio:

1. riutilizzare le frazioni liquide come eluenti per applicazioni non fogliari, come irrigazione a goccia, fertirrigazione, o distribuzione di erbicidi nel sottofilo di colture arboree;
2. riutilizzarle come eluenti per trattamenti erbicidi di pieno campo in pre-emergenza;
3. riutilizzarle nel serbatoio dello spandiliquame dell’azienda e spanderle in campo (soltanto sul terreno aziendale e rispettando la legislazione locale vigente sullo spandimento).

Condizioni: non riutilizzarle in aree a rischio di allagamenti (almeno uno ogni 10 anni), dove vi siano punti di captazione dell’acqua potabile o pozzi, in aree declivi prospicienti corsi d’acqua o in presenza di suoli sensibili all’erosione. La distribuzione di tali frazioni di miscela diluita non deve avere alcun tipo di effetto biologico indesiderato su qualsivoglia coltura. Se la tecnica di distribuzione è l’irrurazione, rispettare le regole generali per l’irrurazione (linee guida inerenti le fasi prima, durante e dopo l’esecuzione del trattamento). Il trasferimento dell’acqua contaminata con agrofarmaci al serbatoio di stoccaggio non deve generare rischi di contaminazione ambientale ed il serbatoio di stoccaggio deve essere ben identificato (etichettato). Pianificare tali aspetti prima di iniziare il trattamento. Assicurarsi che sia tenuto un registro delle quantità di reflui presenti in azienda e dei siti aziendali impiegati per il loro riutilizzo. Quest’ultimo avviene sotto la responsabilità dell’agricoltore.

SMALTIMENTO RIFIUTI SOLIDI

115. **Smaltire i rifiuti solidi contaminati con agrofarmaci secondo le leggi vigenti.**

I rifiuti solidi contaminati con agrofarmaci possono derivare dal processo di depurazione dei reflui (es. matrici dei biofiltri) oppure dal tamponamento di perdite e gocciolamenti con materiale assorbente. Per il contenimento delle perdite si rimanda all’indicazione 35 “Contenere e smaltire immediatamente in condizioni di sicurezza tutti i versamenti e le perdite accidentali di prodotto”.

Le frazioni biodegradabili (ad esempio la segatura impiegata per tamponare le perdite accidentali di prodotto o la matrice organica derivante da processi di depurazione dei reflui) possono essere sottoposte ad un processo di decontaminazione microbica. Preferire il loro riutilizzo se consentito.
Le frazioni **NON biodegradabili** (ad esempio la sabbia utilizzata per tamponare eventuali perdite di prodotto) devono essere conferite ai servizi specializzati per la loro raccolta e per lo smaltimento.

116. Dopo opportuno trattamento riciclare i rifiuti solidi prodotti al termine della distribuzione.

I rifiuti solidi contaminati con agrofarmaci sono quelli che non si può evitare di produrre nelle fasi precedentemente descritte, e risultano dal tamponamento delle perdite accidentali di prodotto con materiale biodegradabile oppure da trattamenti di depurazione dei reflui. I rifiuti solidi possono essere riciclati se legalmente consentito. Controllare la legislazione vigente per lo smaltimento dei rifiuti solidi prima di effettuare investimenti sui sistemi di trattamento dei reflui. **Riciclaggio dopo (bio)degradazione:** stesse condizioni poste per il riutilizzo immediato, salvo che per la limitazione del residuo totale di miscela dell’irroratrice. Il riciclaggio non è consentito nel caso si verifichino incidenti o inconvenienti che condizionino il processo di degradazione, per esempio perdite di olio sulla matrice attiva. La (bio)degradazione deve essere effettuata in un luogo coperto e protetto, che non presenti alcun rischio per l’ambiente. La quantità di agrofarmaco inizialmente immesso nel sistema di degradazione non deve superare il valore massimo raccomandato per evitare la saturazione, in maniera tale che il liquido depurato risultante possa essere riutilizzato senza correre rischi di danneggiare le colture. In nessun caso è consentito immettere il liquido depurato direttamente nei corpi idrici. Il tempo di biodegradazione deve essere legato alla quantità di principio attivo immesso nel sistema nel corso del tempo e deve essere di almeno un anno per un sistema chiuso impiegato secondo le istruzioni fornite dal costruttore.

117. I rifiuti solidi non biodegradabili o già riciclati dovrebbero essere smaltiti come rifiuti pericolosi.

Altri casi: i rifiuti solidi non biodegradabili contaminati da agrofarmaci (ad esempio sabbia impiegata per tamponare gli sversamenti di agrofarmaco) devono essere smaltiti come rifiuti pericolosi. Consultare un esperto locale per ottemperare alle disposizioni vigenti e sull’incenerimento di rifiuti pericolosi con recupero dell’energia prodotta. Diversamente smaltirli attraverso ditte specializzate in luoghi ufficialmente deputati al trattamento dei rifiuti pericolosi.
L’INQUINAMENTO DIFFUSO DA AGROFARMACI

La contaminazione diffusa dei corpi idrici e dell’ambiente in generale è principalmente legata a fenomeni di ruscellamento superficiale (talvolta anche all’erosione del suolo) e di deriva del prodotto fitoiatrico.

Il ruscellamento è causato dall’azione di trasporto ad opera dell’acqua degli agrofarmaci sulla superficie del suolo e nello strato sotto superficiale ed è soprattutto influenzato dalle caratteristiche pedoclimatiche (tipo e struttura del terreno, precipitazioni), topografiche (pendenza e orientamento), colturali e gestionali (tipo di coltura, modalità di gestione del terreno, epoca e modalità di applicazione degli agrofarmaci, disposizione delle affossature).

La contaminazione delle acque superficiali ad opera della deriva è invece soprattutto dipendente dalle scelte operative adottate per la distribuzione (tipo e modalità di impiego delle macchine irratrici), dalle condizioni ambientali (velocità e direzione del vento, umidità e temperatura dell’aria), oltre che dalla vicinanza ai corpi idrici superficiali.

LA DERIVA GENERATA DALLA MACCHINA IRRORATRICE

Secondo la definizione riportata nella Norma UNI ISO 22866 “la deriva del prodotto fitoiatrico è la quantità di miscela erogata dall’irratace nel corso del trattamento che, per azione delle correnti d’aria ambientali, viene allontanata dall’area oggetto della distribuzione” (Fig. 101). Tra le conseguenze della dispersione di parte del liquido erogato al di fuori dell’area trattata vi può essere la contaminazione con agrofarmaci di corsi d’acqua, aree sensibili (quali ad esempio parchi naturali, parchi giochi per bambini, aree umide, ecc.) ed aree urbane, oppure si possono registrare indesiderati depositi di agrofarmaci su colture adiacenti al campo trattato. Quest’ultimo fenomeno può tradursi nella presenza di residui di sostanze attive non ammesse su determinate colture oppure in danni diretti da fitotossicità.

Fig. 101 - Esempio di deriva generata durante un trattamento fitoiatrico effettuato in vigneto.
La Direttiva Europea 128/2009/CE sull’uso sostenibile degli agrofarmaci contiene delle indicazioni specifiche per prevenire i rischi di contaminazione dell’ambiente legati alla deriva. In particolare, l’Articolo 11 di tale Direttiva, che si intitola “Misure specifiche per la tutela dell’ambiente acquatico e dell’acqua non potabile” definisce la necessità di:

a) prevenire la generazione della deriva dando “preferenza alle tecniche di applicazione più efficienti, quali l’uso di attrezzature di applicazione dei prodotti fitosanitari a ridotta dispersione soprattutto nelle colture con elevato sviluppo verticale, quali frutteti, luppolo e vigneti”;

b) ridurre il rischio di esposizione alla deriva attraverso il “ricorso a misure di mitigazione che riducano al minimo i rischi di inquinamento causato dalla dispersione dei prodotti irrorati, o dal loro drenaggio e ruscellamento. Esse includono la creazione di aree di rispetto di dimensioni appropriate per la tutela degli organismi acquatici non bersaglio e di aree di salvaguardia per “le acque superficiali e sotterranee utilizzate per l’estrazione di acqua potabile, nelle quali sia vietato applicare o stoccare i prodotti fitosanitari”.

LE MISURE DI MITIGAZIONE

Le misure di mitigazione per ridurre la deriva possono essere classificate in dirette e indirette (Fig. 102).

1) Misure dirette, finalizzate a ridurre alla fonte la generazione di deriva (formazione e direzione delle gocce). Queste misure si indirizzano principalmente all’impiego di soluzioni tecnologiche ed accessori utili a ridurre la generazione della deriva ed a regolare correttamente l’erogazione dei getti.

2) Misure indirette, finalizzate a ridurre la deriva attraverso sistemi di “cattura” della deriva stessa quali ad esempio fasce di rispetto (buffer zone e no spray zone) o barriere fisiche disposte intorno al campo trattato (es. frangivento, reti antigrandine, ecc.).

È molto importante che l’operatore rispetti le raccomandazioni circa le condizioni meteorologiche ed ambientali più appropriate per effettuare l’irrorazione.

MISURE PER SALVAGUARDARE L’AMBIENTE DALLA DERIVA

DIRETTE
- Limitare la generazione di deriva
 - Impiegare dispositivi tecnici in grado di ridurre la deriva (SDRT)
 - Macchina irroratrice
 - Parametri della distribuzione
 - Contesto del trattamento

INDIRETTE
- Limitare l’esposizione alla deriva
 - Fasce non trattate
 - Fasce tampone (buffer zones)
 - Fasce vegetate
 - Barriere frangivento, reti antigrandine, ecc.
 - Buffer zone di ampiezza fissa
 - Buffer zone di ampiezza variabile (in funzione del tipo di attrezzatura impiegata)

Fig. 102 – Le misure di mitigazione della deriva.

LE LINEE GUIDA TOPPS PROWADIS

L’ATTUALE SCARSO LIVELLO DI ARMONIZZAZIONE FRA GLI STATI DELL’UNIONE EUROPEA

Dopo aver effettuato una verifica delle legislazioni esistenti nei diversi Paesi UE sul tema della deriva, i partners del progetto TOPPS-prowadis hanno potuto constatare che nell’ambito dell’Unione Europea il livello di armonizzazione dei regolamenti in materia è molto scarso. In alcuni Paesi i dispositivi tecnici in grado di ridurre la deriva (noti internazionalmente come Spray Drift Reducing Techniques, SDRT) sono oggetto di prove specifiche e sono classificati in base all’efficacia di abbattimento della deriva. Al momento tali dispositivi per la riduzione della deriva si basano principalmente sulla limitazione della quantità di gocce molto fini generate dagli ugelli a polverizzazione idraulica, che sono quelli più diffusi sulle barre irroratrici per le colture erbacee. In alcuni Paesi dell’UE l’implementazione dei dispositivi SDRT è stata ampiamente accettata, soprattutto per le barre irroratrici, in altri Paesi, invece, fino ad ora tali dispositivi in grado di limitare la deriva sono ancora scarsamente diffusi.

Le prove per la classificazione delle irroratrici per il vigneto e per il frutteto in funzione della deriva generata sono assai più complesse e, ad oggi, soltanto pochi Paesi hanno iniziato a promuovere l’adozione di macchine e dispositivi classificati come in grado di ridurre la deriva. La maggior complessità operativa legata alla distribuzione degli agrofarmaci in vigneto ed in frutteto fa sì che sia necessario esaminare la configurazione
dell’intera macchina irroratrice e non soltanto l’aspetto legato alla generazione delle gocce, così come accade invece per le colture erbacee. Occorre, inoltre, sottolineare che, soprattutto nei paesi del Sud Europa, molti viticoltori e frutticoltori impiegano irroratrici a polverizzazione pneumatica, che presentano margini di regolazione ridotta in quanto a dimensione delle gocce erogate.

Uno schema europeo per Buone Pratiche comuni

A causa delle diverse situazioni agroambientali che si incontrano nei diversi Paesi dell’UE occorre prevedere degli adattamenti delle Buone Pratiche alle specifiche condizioni locali. Tali indicazioni più specifiche per le diverse realtà saranno oggetto dell’attività di formazione che sarà svolta nell’ambito del progetto TOPPS-prowadis in ciascun Paese, e che si baserà anche sui contenuti di questo libretto. Con questo documento si intende proporre una serie di Buone Pratiche comuni a livello europeo, che possa fungere da base per un ulteriore sviluppo armonizzato dei regolamenti vigenti in ambito UE in tema di mitigazione della deriva del prodotto fitoibatrico.

L’armonizzazione fra Paesi europei è un vantaggio perché è importante disporre di uno schema di regole condivise, al fine di creare una base comune per poter mettere in atto strategie di respirio internazionale e per sviluppare il necessario livello di fiducia affinché tali regole siano adottate e rispettate. La fiducia nelle validità di queste regole è un aspetto essenziale, poiché non sempre sono ovvi i benefici immediati che possono essere portati da un cambiamento delle pratiche agricole o dall’investimento di denaro in nuove tecnologie così come non sono sempre correttamente valutati i benefici previsti a lungo termine.

Buone Pratiche – Processo di consultazione

Il gruppo di lavoro del progetto TOPPS-prowadis che si occupa del tema della deriva ha preparato una prima proposta di Buone Pratiche (BMP), che, in ciascun Paese, attraverso incontri e forum organizzati a livello nazionale dai partners di TOPPS-prowadis, è stata sottoposta all’attenzione degli stakeholders (rappresentanti delle autorità pubbliche dei settori agricoltura e ambiente, di enti di ricerca, di enti pubblici e di società private che gestiscono le reti idriche, di costruttori di macchine irroratrici, di produttori di agrofarmaci, di associazioni di tecnici di campo ed agricoltori). Dopo questa prima consultazione, che ha permesso di ottenere suggerimenti ed osservazioni utili per migliorare la stesura delle Buone Pratiche, si è tenuto il 26 Aprile 2012 a Bruxelles un workshop con gli stakeholders europei, dove è stata esaminata e discussa la bozza definitiva delle Buone Pratiche (BMP) in vista della loro pubblicazione ufficiale.
STRUTTURA DELLE BUONE PRATICHE (BMP)

Le Buone Pratiche per contenere la deriva si compongono di due parti:

- **a) Linee guida (statement) = Che cosa fare** (brevi regole sintetiche);
- **b) Specifiche tecniche = Come farlo** (breve spiegazione delle possibili opzioni percorribili per ottenere quanto prescritto dalla regola, Fig. 103).

Le **linee guida** rappresentano l’”anima Europea” delle Buone Pratiche che dovrebbe essere seguita da tutti i Paesi UE e che dovrebbe, quindi, costituire la base comune. Nel corso del processo di consultazione si è, pertanto, mirato soprattutto a condividere ed approvare tali linee guida.

Le **specifiche tecniche** dovrebbero fornire indicazioni su come operare praticamente in modo corretto. In un documento generale valido per tutta l’Unione Europea, pertanto, tali specifiche tecniche non possono essere dettagliate in funzione delle caratteristiche di ciascun singolo Paese. Tutti gli aspetti specificamente legati alle realtà agroambientali locali saranno oggetto del materiale formativo ed informativo che sarà prodotto dai partners di TOPPS-Prowadis in ciascun Paese. Le BMP proposte non interferiscono con le indicazioni riportate sulle etichette degli agrofarmaci né con gli altri requisiti di legge che tali prodotti devono soddisfare e che devono sempre essere rispettati. Le BMP si propongono di costituire una guida pratica e coerente per gli agricoltori, i costruttori di macchine irroratrici e tutti gli altri stakeholders con lo scopo di rendere più sostenibile l’impiego degli agrofarmaci.

Le BMP TOPPS – Prowadis per contenere la deriva del prodotto fitoiatrico sono state suddivise in tre sezioni principali:

1. **Misure generali per ridurre la deriva** (valide sia per le barre irroratrici sia per irroratrici impiegate sulle colture arboree)
2. **Misure per ridurre la deriva generata dalle barre irroratrici**
3. **Misure per ridurre la deriva generata dalle irroratrici impiegate sulle colture arboree**

Nel corso delle consultazioni svoltesi durante la genesi delle BMP, gli stakeholders hanno chiesto che le Buone Pratiche fossero proposte secondo dei livelli di priorità da seguire. Ciò è stato fatto assegnando a ciascuna BMP un colore identificativo:

- **Verde**: BMP da adottare assolutamente
- **Giallo**: BMP molto importante da seguire
- **Blu**: BMP importante, con specifiche tecniche da adattare alle condizioni agroambientali del singolo Paese/Regione.
Si tratta di brevi “regole” che devono essere seguite dagli agricoltori di tutti gli Stati Membri dell’UE.

Le BMP sono state, quindi, raggruppate in 6 CATEGORIE per facilitarne la ricerca e l’identificazione da parte dell’utente (Fig. 104).

Di seguito, per ciascuna categoria e dopo una breve introduzione generale, anche avvalendosi di fotografie e schemi vengono riportate sia le Linee guida sia le specifiche tecniche da seguire per ottenere il risultato di riduzione della deriva.

In particolare, le Linee guida sono riportate evidenziate in verde, giallo o blu (in funzione della priorità) e caratterizzate da un numero progressivo, mentre le relative specifiche tecniche sono riportate in colore nero e stile corsivo.
MISURE GENERALI (VALIDE SIA PER LE BARRE IRRORATRICI CHE PER GLI ATOMIZZATORI)

Fattori ambientali

Prima di iniziare un trattamento fitosanitario si devono prendere in considerazione i fattori ambientali che hanno un’influenza rilevante sul rischio di generare deriva. E’, innanzitutto, necessario conoscere la distanza che separa la coltura oggetto del trattamento da qualsiasi area sensibile. Si dovrebbero poter verificare queste informazioni sulle mappe dei terreni dove dovrebbe anche essere riportata l’eventuale presenza di misure di mitigazione indiretta della deriva quali fasce di rispetto (buffer zones) oppure siepi, barriere frangivento naturali o artificiali (Fig. 105), o altre strutture in grado di limitare la deriva.

Altri fattori molto importanti da considerare specialmente per quanto riguarda i frutteti ed i vigneti sono:

1) la struttura della vegetazione (forma di allevamento, sesto d’impianto, densità della chioma);
2) l’uniformità della parete vegetative lungo il filare (assenza o presenza di spazi tra una pianta e l’altra lungo il filare);
3) lo stadio vegetativo e/o la vigoria della coltura, che influenzano fortemente l’entità del rischio di deriva specialmente in corrispondenza dei filari che si trovano in prossimità delle aree sensibili. L’aspetto chiave è costituito dalla superficie fogliare (Fig. 106) e dalla densità della vegetazione che tanto è maggiore, tanto meglio cattura le gocce erogate e le mantiene, quindi, all’interno dell’area trattata.

Fig. 105 – Esempio di utilizzo di barriere frangivento naturali.
4) I fattori ambientali non sono soggetti a mutamenti repentini e sono perciò essenziali per pianificare qualsiasi trattamento e la relativa strategia per limitare la deriva.

1 Impiegare dispositivi e accorgimenti per limitare la deriva in particolare quando si effettua la distribuzione su bersagli che intercettano poco la miscela irrorata (es. ridotta area fogliare, stadio vegetativo precoce, ecc.)

- Prestare attenzione alle situazioni critiche, per esempio: applicazione di erbicidi di pre-emergenza su terreno nudo, trattamenti su colture perenni in fase di riposo vegetativo, oppure, sulle colture arboree, distribuzioni effettuate nei primi stadi vegetativi quando il fogliame non è ancora sviluppato e l’effetto barriera costituito dalla vegetazione rispetto alla dispersione delle gocce oltre il bersaglio è limitato (Fig. 107).
- Nelle colture arboree, identificare preventivamente la posizione delle eventuali fallanze presenti lungo i filari in maniera tale da interrompere l’erogazione del liquido in corrispondenza delle stesse.
- Adottare accorgimenti e dispositivi tecnici per ridurre il rischio di generare deriva: ad esempio, effettuare la regolazione della macchina ogni volta che si esegue un trattamento, impiegare ugelli antideriva, ridurre la distanza fra il punto di erogazione del liquido ed il bersaglio, ecc.

Fig. 106 - Entità della deriva a terra in funzione del LAI – Indice di area fogliare (prove Disafa-Università di Torino in vigneto).
2 Costruire e coprire adeguatamente i pozzi

- Seguire la legislazione nazionale e avere cura di scavare i nuovi pozzi lontano da aree che si allagano facilmente, dalle paludi e dalle aree dedicate al riempimento e al lavaggio delle irroratrici.
- Indicare la posizione dei pozzi nelle mappe dei propri appezzamenti.
- Seguire la legislazione vigente a livello locale circa la distanza che deve essere osservata intorno ai pozzi quando si effettuano i trattamenti fitosanitari e disporre dei riferimenti in campo che facilitino il rispetto di tali distanze.
- Assicurarsi che i pozzi siano adeguatamente coperti e protetti (si ricorda che i pozzi sono spesso collegati direttamente alla falda freatica, Fig. 108).
3 Controllare la legislazione locale e le istruzioni riportate sulle etichette degli agrofarmaci in merito all’osservazione di zone di rispetto (buffer zones) per prevenire la contaminazione di aree sensibili.

- Leggere le etichette degli agrofarmaci dove sono riportate le indicazioni sull’ampiezza delle zone di rispetto (buffer zones, Fig. 109) che devono essere osservate; si ricorda che questo aspetto fa parte del processo di registrazione di ciascun agrofarmaco.

![Buffer zone Diagram](image)

Fig. 109 – Esemplificazione di una buffer zone (zona di rispetto). L’ampiezza di tali fasce si misura dal bordo del campo trattato (o dall’inizio della porzione di campo non trattata) al punto in cui il pelo dell’acqua, abitualmente presente nel corpo idrico, incontra l’argine verso il campo trattato.

- Controllare se vigono regolamenti locali che impongono il rispetto di ulteriori distanze tra il campo trattato e le aree adiacenti.
- L’ampiezza delle buffer zones prescritta per ciascun agrofarmaco può variare in funzione delle tecniche adottate per la distribuzione (es. uso di dispositivi per la
riduzione della deriva, presenza di barriere frangivento, ecc.). Verificare sempre quanto indicato nei regolamenti locali.

4 Mantenere fasce vegetate o disporre barriere frangivento tra i campi dove si distribuiscono gli agrofarmaci e le aree sensibili all’inquinamento.

- Preservare e mantenere la vegetazione esistente e le barriere frangivento.
- Prevedere l’impianto di una fascia vegetata in corrispondenza della buffer zone, se la specifica situazione lo richiede. In funzione della coltura principale, si sceglierà l’essenza (arbustiva o arborea) più adatta. Si tenga conto dei seguenti aspetti principali: l’altezza della barriera vegetale dovrà essere preferibilmente di almeno 6-8 m in prossimità dei frutteti, e di 2-3 m in prossimità di colture erbacee di pieno campo. Per quanto concerne la densità della chioma si raccomanda di orientarsi verso conifere o piante decidue che sviluppino la chioma prima dello sviluppo della coltura principale, ossia dell’epoca dei trattamenti (Fig. 110). Consultare i servizi di assistenza tecnica sul territorio per avere indicazioni tecniche, giuridiche ed amministrative (es. possibilità di ottenere incentivi) prima di impiantare una fascia vegetata nella buffer zone.
- Realizzare barriere artificiali che possano limitare la dispersione dello spray (es. reti in materiale plastico). Consultare i servizi di assistenza tecnica sul territorio.

Fig. 110 - Riduzione della deriva nel tempo grazie alla barriera vegetale.

Condizioni meteorologiche

Le condizioni meteorologiche rappresentano uno dei fattori che influenza di più l’entità della deriva. Tali condizioni non possono essere modificate direttamente né possono essere previste con esattezza. La velocità e la direzione del vento, la temperatura e l’umidità dell’aria sono i parametri da prendere in considerazione. Nella maggior parte dei Paesi europei si raccomanda quali valori di questi parametri devono essere rispettati per poter operare la distribuzione degli agrofarmaci. Se il valore di una delle variabili
esaminate supera i limiti stabiliti si raccomanda di non effettuare il trattamento. I limiti possono essere diversi nei vari Paesi ma devono essere sempre tenuti in considerazione e rispettati. La velocità del vento influenza la quantità di gocce fini che vengono trasportate al di fuori dell’area trattata (Fig. 111).

Fig. 111 - Influenza della velocità del vento sulla deriva impiegando diverse tipologie di ugelli (prove Disafa in galleria del vento).

In condizioni di ridotta umidità dell’aria, aumenta l’entità dell’evaporazione delle goccioline erogate dall’irroratrice. Questo effetto determina un aumento della quantità di gocce molto fini e pertanto del rischio di deriva. Se la temperatura dell’aria è molto elevata le gocce fini tendono a risalire verso l’alto nell’atmosfera e ne viene ritardata quindi la ricaduta a terra (deriva termica). La nuvola di goccioline rimane pertanto esposta più a lungo all’azione delle correnti d’aria ambientali e può essere trasportata anche a considerevole distanza dall’area trattata.

5 Controllare le previsioni meteorologiche prima di pianificare la distribuzione degli agrofarmaci in campo

- Consultare i servizi meteorologici locali per verificare in dettaglio le previsioni meteo nell’area oggetto del trattamento.
- Prestare particolare attenzione ai valori previsti di velocità e direzione del vento, oltre che a quelli di temperatura e umidità nelle diverse ore del giorno.
• Pianificare l'esecuzione del trattamento nelle condizioni meteorologiche più favorevoli: velocità del vento < 2,5 m/s; temperatura compresa tra 10 e 25°C; umidità relativa > 50%; direzione del vento contraria rispetto alla posizione delle aree sensibili
• Trattare le parti del campo in prossimità delle aree sensibili preferibilmente in condizioni di calma di vento.

6 Verificare le condizioni meteorologiche presenti nel momento in cui si appresta ad effettuare la distribuzione degli agrofarmaci in campo

• Prima di iniziare la distribuzione controllare i seguenti parametri: velocità e direzione del vento, temperatura e umidità dell’aria.
• Decidere di iniziare la distribuzione dopo aver valutato le condizioni meteorologiche; se possibile avvalersi di strumentazione adeguata (es. capannina meteo, strumenti portatili) per poter verificare i dati meteo in tempo reale.
• Assicurarsi che l’irroratrice sia regolata correttamente ed equipaggiata con dispositivi adeguati per contenere il più possibile l’entità della deriva.

7 Non distribuire gli agrofarmaci quando la velocità del vento è eccessiva

• Se non vi sono limiti di velocità del vento indicati dalle autorità locali per l’esecuzione dei trattamenti fitoibiatrici, operare preferibilmente in assenza di vento o con velocità del vento non superiore a 3,0 m/s (la velocità del vento deve essere misurata ad un’altezza da terra corrispondente a quella dove si disperde la deriva).
• Nel caso in cui vi sia vento con velocità elevata (3,1 - 5,0 m/s) interrompere l’esecuzione del trattamento fino a quando non diminuisce la velocità del vento.
• Se si ha disposizione una finestra di tempo limitata o se per altri motivi la distribuzione dell’agrofarmaco non può essere posticipata impiegare le più efficaci misure di mitigazione della deriva disponibili.
• Non effettuare mai i trattamenti in presenza di vento con velocità molto elevata, superiore a 5,0 m/s.

8 Distribuire gli agrofarmaci in presenza di condizioni atmosferiche stabili

• Evitare di distribuire gli agrofarmaci nelle calde serate estive per evitare il fenomeno della deriva termica.
• Effettuare il trattamento, se possibile, nelle ore più fresche delle giornata (mattino)
• Se si ha disposizione una finestra di tempo limitata o se per altri motivi la distribuzione dell’agrofarmaco non può essere posticipata impiegare ugelli che
Producono gocce grandi o molto grandi, ridurre la velocità dell’aria e la velocità di avanzamento (applicare misure di mitigazione).

Generazione dello spray

Vi sono principalmente tre sistemi di polverizzazione del liquido che sono utilizzati per distribuire gli agrofarmaci: idraulico (la pressione del liquido in corrispondenza dell’orifizio dell’ugello determina la formazione delle gocce), pneumatico (le gocce sono generate da una corrente d’aria molto veloce che investe una vena liquida), centrifugo (le gocce vengono prodotte grazie alla forza centrifuga di dischi rotanti).

Fig. 112 – I tre differenti sistemi di polverizzazione del liquido.

Gli ugelli a polverizzazione idraulica sono la tipologia più importante e diffusa in Europa. Ne sono disponibili diverse tipologie con differenti dimensioni delle gocce erogate. Poiché possono essere sostituiti facilmente sulle macchine irroratrici, la corretta scelta dell’ugello rappresenta una delle principali misure di mitigazione della deriva. I diffusori pneumatici sono impiegati principalmente nel Sud dell’Europa, soprattutto in vigneto. Con la tecnologia oggi disponibile è difficile variare in modo significativo la dimensione delle gocce erogate nelle condizioni d’uso delle irroratrici. Per ottenere gocce più grandi, infatti, occorre ridurre la velocità dell’aria ma, d’altra parte, la stessa aria serve per veicolare le gocce verso il bersaglio e favorirne la penetrazione all’interno della chioma. Gli ugelli a polverizzazione centrifuga sono scarsamente diffusi in Europa. Per incrementare la dimensione delle gocce erogate, in questo caso, occorre diminuire la velocità di rotazione del disco.

In alcuni Paesi europei gli ugelli sono classificati in base alla loro capacità di abattere la deriva. Lo schema di classificazione è diverso da Paese a Paese e può incidere sull’ampiezza delle buffer zones previste per gli agrofarmaci.
9 Preferire l’impiego di ugelli che producono una limitata quantità di gocce molto fine (<100 µm) e adottare pressioni di esercizio contenute.

- Utilizzare ugelli caratterizzati da uno spettro di dimensione delle gocce (Fig. 113 e Fig. 114) appropriato per contenere la deriva e operare con una ridotta a bassa pressione di esercizio.

- L’impiego degli ugelli antideriva è indispensabile in condizioni di velocità del vento elevata (3,1÷5,0 m/s) e/o quando si opera con velocità di avanzamento superiore a 8 km/h.

Fig. 113 - Variazione dimensionale (VMD = diametro mediano volumetrico) delle gocce erogate da differenti tipologie di ugelli a fessura in funzione della pressione.
Fig. 114 - Esempio di spettro dimensionale (linea rossa tratteggiata) delle gocce prodotte da un ugello a fessura 02 alla pressione di 5 bar.

10 Utilizzare ugelli ufficialmente classificati come antideriva

Molti Paesi classificano gli ugelli come antideriva confrontandoli con un ugello di riferimento (*ugello a fessura convenzionale ISO 03, con angolo di apertura di 110°, alla pressione di esercizio di 3 bar*).

- Scegliere gli ugelli in base alla classificazione vigente a livello locale.
- Se nel proprio Paese non è disponibile una classificazione degli ugelli in funzione della deriva le indicazioni di seguito riportate (Fig. 115) possono essere di aiuto per la scelta degli ugelli più adatti.
11 Impiegare ugelli a iniezione d’aria sulle barre irroratrici

Gli ugelli a iniezione d’aria sono in grado di abbattere la deriva dal 50 al 90% rispetto agli ugelli convenzionali. Sia gli ugelli a fessura che quelli a turbolenza, grazie ai sistemi ad iniezione d’aria, generano gocce più grandi che inglobano al loro interno microscopiche bolle d’aria e che sono quindi meno soggette alla deriva (Tab. 8, Fig. 116).

- Quando si sceglie di operare con ugelli ad iniezione d’aria verificare sempre la corretta pressione di esercizio indicata nel manuale di istruzioni.
- L’efficacia biologica della maggior parte degli agrofarmaci non cambia usando gli ugelli ad iniezione d’aria rispetto a quella che si ottiene con gli ugelli convenzionali. In caso di dubbi al riguardo per uno specifico prodotto, consultare il produttore dell’agrofarmaco.

Tabella 8

<table>
<thead>
<tr>
<th>Tipologia di ugello</th>
<th>Pressione di esercizio</th>
<th>Riduzione della deriva rispetto all’ugello di riferimento*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ugello convenzionale a fessura o a turbolenza con angolo di apertura ridotto</td>
<td>1 – 4 bar</td>
<td>10 – 20%</td>
</tr>
<tr>
<td>Ugello a fessura con pre-camera</td>
<td>2 – 5 bar</td>
<td>30 – 50%</td>
</tr>
<tr>
<td>Ugello a fessura ad iniezione d’aria</td>
<td>2 – 8 bar</td>
<td>70 – 90%</td>
</tr>
<tr>
<td>Ugello di fine barra ad iniezione d’aria</td>
<td>1 – 1,5 bar</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td>2 – 2,5 bar</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>4 – 8 bar</td>
<td>50%</td>
</tr>
<tr>
<td>Ugello a turbolenza ad iniezione d’aria</td>
<td>3 – 10 bar</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>10 – 15 bar</td>
<td>50%</td>
</tr>
</tbody>
</table>

Fig. 115 – Riduzione della deriva rispetto ottenibile operando con diverse tipologie di ugello (ugello di riferimento: ISO 03 110° a 3 bar).
Tab. 8 - Dimensione delle gocce prodotte da un ugello a iniezione d’aria (AI 110 04) e da un ugello tradizionale (XR 110 04) a parità di pressione e di portata erogata.

<table>
<thead>
<tr>
<th></th>
<th>d10</th>
<th>d50 (VMD)</th>
<th>d90</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI 11004 -6 bar</td>
<td>274</td>
<td>541</td>
<td>829</td>
</tr>
<tr>
<td>XR 11004 - 6 bar</td>
<td>106</td>
<td>231</td>
<td>362</td>
</tr>
</tbody>
</table>

12 Impiegare ugelli ad iniezione d’aria sulle macchine irroratrici per vigneto e frutteto

Gli ugelli a iniezione d’aria sono in grado di abbattere la deriva dal 50 al 90% rispetto agli ugelli convenzionali (Fig. 117). Sia gli ugelli a fessura che quelli a turbolenza, grazie ai sistemi ad iniezione d’aria, generano gocce più grandi che inglobano al loro interno microscopiche bolle d’aria e che sono quindi meno soggette alla deriva.

- Preferire l’impiego di ugelli ad iniezione d’aria caratterizzati da un angolo di apertura limitato (es. 40°-60°) al fine di limitare gli urti fra gocce erogate da ugelli adiacenti
- Nel caso la distanza tra l’ugello ed il bersaglio sia ridotta (inferiore a 50 cm) scegliere ugelli ad iniezione d’aria con angolo di apertura più ampio (es. 90°-110°).
- Se possibile, sull’irroratrice regolare la distanza reciproca fra gli ugelli ed il loro orientamento in funzione della distanza tra ugelli e vegetazione al fine di garantire la necessaria copertura del bersaglio.
- L’impiego di ugelli a turbolenza ad iniezione d’aria è raccomandato in particolare per gli atomizzatori tradizionali impiegati in vigneto ed in frutteto, privi di deflettori dell’aria.
- Preferire l’impiego di ugelli a turbolenza ad iniezione d’aria anche quando la distanza tra ugelli e bersaglio è ridotta (es. larghezza dell’interfila contenuta).
- Impiegare gli ugelli antideriva ad iniezione d’aria per i trattamenti effettuati nei primi stadi vegetativi della coltura, quando la superficie fogliare è ridotta; abbinare una ridotta portata del ventilatore ad una limitata velocità dell’aria e adeguare opportunamente la direzione del flusso d’aria.
- L’efficacia biologica della maggior parte degli agrofarmaci non cambia usando gli ugelli ad iniezione d’aria rispetto a quella che si ottiene con gli ugelli convenzionali. In caso di dubbi al riguardo per uno specifico prodotto, consultare il produttore dell’agrofarmaco.

![Diagram](image)

Fig. 117 – Riduzione della deriva in vigneto con l’impiego di ugelli ad iniezione d’aria (prove Disafa in vigneto).

13 Ridurre la velocità dell’aria nei diffusori pneumatici

Durante le fasi di utilizzo delle irroratrici a polverizzazione pneumatica, nella maggior parte dei casi, risulta difficile modificare la dimensione delle gocce erogate. Si ricorda che nelle irroratrici pneumatiche una sottile vena liquida viene investita da una corrente d’aria molto veloce (80-120 m/s) e ciò determina la produzione di goccioline molto fini (100-150 µm, Fig. 118).
Fig. 118 – Spettro dimensionale (linea blu tratteggiata) delle gocce erogate da un diffusore pneumatico (portata = 1.4 l/min).

- **Una prima possibilità** per ridurre la velocità dell’aria è agire sulla velocità di rotazione del ventilatore (Fig. 119). La riduzione di velocità dell’aria, tuttavia, non deve pregiudicare la penetrazione delle gocce all’interno della vegetazione.
- **Una seconda possibilità** per ridurre la velocità dell’aria è agire sulla dimensione dei diffusori: maggiore è la sezione di uscita dei diffusori, infatti, minore risulta essere la velocità dell’aria in uscita, con conseguente produzione di gocce di dimensioni maggiori.
Fig. 119 – Variazione della dimensione delle gocce di un diffusore pneumatico al variare del regime di rotazione del ventilatore.

14 Ridurre la velocità di rotazione del disco negli ugelli centrifughi

Negli ugelli centrifughi il liquido a bassa pressione viene indirizzato verso il centro di un disco che ruotando velocemente genera delle gocce fini. Durante le fasi di utilizzo in campo di tali dispositivi la modifica della dimensione delle gocce può risultare complessa poiché tali modifiche, ottenute variando la velocità di rotazione del disco (Fig. 120), possono incidere anche sulla penetrazione delle gocce all’interno della vegetazione. Controllare il manuale di istruzioni degli ugelli centrifughi per avere informazioni più dettagliate.

Fig. 120 - Variazione della dimensione delle gocce al variare della regime di rotazione del disco.
15 Impiegare prodotti coadiuvanti antideriva se raccomandati dal produttore dell’agrofarmaco

I prodotti coadiuvanti antideriva modificano le proprietà fisiche della miscela fitostratifica da distribuire in campo.

- Cambiamenti della viscosità della miscela possono influenzare le dimensioni delle gocce erogate e le portate degli ugelli.
- Stabilire la corretta concentrazione di coadiuvante nella miscela è un fattore critico per ottenere l’effetto di riduzione della deriva.
- Sostanze igroscopiche possono ridurre la volatilità delle gocce molto fini in condizioni di bassa umidità dell’aria (Fig. 121).
- Molte formulazioni degli agrofarmaci sono già ottimizzate e non richiedono l’aggiunta di coadiuvanti.
- Per ogni agrofarmaco utilizzato, verificare l’etichetta e le istruzioni del produttore per verificare se e quando sia indicata la possibilità di aggiungere prodotti coadiuvanti.

Fig. 121 – Effetto del coadiuvante sulla deriva (ugello a fessura tradizionale XR 03 Pressione: 3 bar, altezza: 50 cm, vento: 2.8 m/s).
Attrezzatura per l’irrorazione

Per ridurre la deriva l’elemento chiave è la macchina irroratrice, oltre che l’utilizzo corretto dell’agrofarmaco. Per gli atomizzatori impiegati sulle colture arboree, in particolare, è necessario valutare la potenziale riduzione della deriva che può essere ottenuta applicando gli opportuni accorgimenti. Tre aspetti, di seguito elencati, sono particolarmente importanti:

a) Dimensione delle gocce erogate;

b) Tecnica di distribuzione degli agrofarmaci e facilità di regolazione della macchina irroratrice (compresa quella dell’aria);

c) Modifica dei parametri operativi dell’irroratrice in funzione di fattori ambientali e delle caratteristiche della vegetazione.

Alcuni Paesi hanno iniziato a classificare ufficialmente le macchine irroratrici in funzione della deriva generata, evidenziando l’entità della potenziale riduzione della deriva che si può ottenere, rispetto ad una macchina standard di riferimento, grazie all’impiego di appositi accorgimenti e dispositivi tecnici, noti come Spray Drift Reducing Technology o SDRT. I modelli di macchine irroratrici equipaggiati con dispositivi SDRT vengono così raggruppati in classi in funzione del loro potenziale di riduzione della deriva (es. 25%, 50%, 75%, 90%, 95% o 99%, vedi norma ISO 22369-1, Tab. 9 Fig. 122).

<table>
<thead>
<tr>
<th>Classe di riduzione della deriva (ISO 22369-1)</th>
<th>Entità della riduzione della deriva rispetto al riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>95% ÷ 99%</td>
</tr>
<tr>
<td>B</td>
<td>90% ÷ 95%</td>
</tr>
<tr>
<td>C</td>
<td>75% ÷ 90%</td>
</tr>
<tr>
<td>D</td>
<td>50% ÷ 75%</td>
</tr>
<tr>
<td>E</td>
<td>25% ÷ 50%</td>
</tr>
<tr>
<td>F</td>
<td>0 ÷ 25%</td>
</tr>
</tbody>
</table>

Tab. 9 – Classi di riduzione della deriva in rispetto alla irroratrice di riferimento secondo la norma ISO 22369-1
I dispositivi per la riduzione della deriva, vengono classificati separatamente per le diverse tipologie di colture (es. colture erbacee, frutteti, vigneti, vivai, piante d’alto fusto). In alcuni Paesi l’impiego dei dispositivi SDRT consente di ridurre l’ampiezza delle zone di rispetto da osservare durante l’applicazione degli agrofarmaci. In mancanza di una classificazione ufficiale delle macchine irroratrici in funzione della deriva stabilita a livello nazionale, occorre rispettare le indicazioni fornite dalle autorità per limitare l’entità della deriva.

16 Verificare la classificazione nazionale dei dispostivi in grado di ridurre la deriva e le eventuali indicazioni in merito fornite dalle autorità locali

- Dotare la propria irratrice di dispositivi tecnici in grado di ridurre la deriva (SDRT) e regolarne i parametri operativi in maniera appropriata, tenendo conto del contesto in cui si opera il trattamento, affinché tali dispositivi risultino efficienti.
- Controllare le prescrizioni valide a livello nazionale per limitare l’entità della deriva.

Fig. 122 – Esempio di percentuali di riduzione della deriva per differenti tipologie di barre irroratrici in funzione del tipo e della dimensione dell’ugello impiegato (Belgio).
17 Fare l’inventario dei dispositivi antideriva disponibili sulla propria macchina irroratrice (e tenere conto della loro eventuale classificazione)

- Verificare in quale classe di riduzione della deriva ricade la propria irroratrice, in base ai dispositivi per contenere la deriva (SDRT) di cui dispone.
- Controllare in particolare: tipologia di irroratrice; ugelli; opzioni disponibili per la regolazione della macchina; presenza di schermature (Fig. 123), sensori, o altri dispositivi utili a limitare la generazione della deriva; per le macchine aeroassistite verificare la possibilità di regolare i parametri dell’aria generata dal ventilatore (velocità, volume, direzione).

![Fig. 123 – Esempi di schermature su barre irroratrici.](image)

18 Impiegare tecniche di distribuzione che consentano di ottimizzare l’uso degli agrofarmaci

- Considerare la possibilità di impiegare tecniche di distribuzione alternative a quelle tradizionali che consentano di ridurre l’impiego dei quantitativi di miscela fitoiotrica e/o di limitare l’entità della deriva. Ad esempio valutare la possibilità di effettuare trattamenti localizzati (es. soltanto sulle file), trattamenti mirati con l’ausilio di sensori (es. diserbo a tratti solo nelle aree dove viene rilevata la presenza delle infestanti), oppure di utilizzare tecniche di applicazione degli
agrofarmaci alternative all’irrorazione (es. impiego di barre umettanti per il diserbo, Fig. 124).

![Image](image_url)

Fig. 124 – Impiego di barra umettante contro il riso crodo (foto: MAR sas - Ronsecco – VC).

19 Impiegare macchine irratorici classificate come in grado di ridurre la deriva

- Acquistare preferibilmente irratorici classificate come in grado di ridurre la deriva.
- Equipaggiare la propria irratorice attualmente in uso con ugelli, componenti ed accessori in grado di aumentare il potenziale di riduzione della deriva.

20 Utilizzare macchine irratorici sottoposte regolarmente al controllo funzionale (tali controlli saranno obbligatori in tutti gli stati membri dell’UE)

In diversi Paesi già oggi è stabilito che tutte le macchine irratorici in uso devono essere sottoposte a controllo funzionale con cadenza regolare, seguendo i metodi di prova riportati nella norma EN 13790 (sarà sostituita nel corso del 2015 dalla norma armonizzata EN ISO 16122); in base a quanto previsto dalla Direttiva UE 128/2009 questo provvedimento dovrà presto essere adottato anche nei Paesi dell’UE in cui tali controlli non sono ancora obbligatori (Fig. 125).

- Se nel proprio Paese non vige ancora un programma di controlli funzionali obbligatori, sottoporre volontariamente la propria irratorice al controllo funzionale.
- Prestare particolare attenzione alla verifica dell’efficienza dei componenti dell’irroratrice che hanno influenza diretta sulla riduzione della deriva (es. ugelli, sistemi di stabilizzazione della barra, sistemi di regolazione del ventilatore e dell’orientamento dei flussi d’aria, ecc.).
21 Impiegare / acquistare macchine irroratrici che soddisfino tutti i requisiti delle norme internazionali EN armonizzate

Con l’approvazione della Direttiva Europea 127 (emendamento della “Direttiva macchine”) i costruttori di macchine irroratrici devono autocertificare che la loro produzione risponde ai requisiti della Norma armonizzata ISO EN 16119.

- Se si intende acquistare un’irroratrice nuova, verificare che rispetti i requisiti previsti dalle norme EN armonizzate.
- Anche le macchine irroratrici assemblate in proprio, se utilizzate per distribuire gli agrofarmaci, devono rispettare gli stessi requisiti delle norme ISO EN previsti per l’autocertificazione delle macchine irroratrici prodotte in serie dai costruttori di macchine irroratrici professionali.

22 Impiegare macchine irroratrici certificate

Acquistare preferibilmente macchine irroratrici certificate (ad esempio secondo il protocollo ENAMA ENTAM - European Network for Testing of Agricultural Machines,
www.entam.net, Fig. 126), che rispettano tutti requisiti costruttivi e funzionali previsti dalle vigenti norme internazionali ISO/EN.

Fig. 126 – Esempio di certificato ENAMA/ENTAM.

- Consultare le linee guida TOPPS-Prowadis per contenere la deriva prima di acquistare una nuova macchina irroratrice

23 Impiegare irroratrici equipaggiate con sistemi di compensazione della pressione di esercizio nelle sezioni di barra (ritorni calibrati)

Se durante la distribuzione occorre chiudere una delle sezioni di barra della macchina irroratrice (es. in funzione della forma dell’appezzamento che si sta trattando con una barra irroratrice), bisogna verificare che la pressione di esercizio nella/sezione/i di barra che rimangono attive rimanga stabile e non si discosti dal valore originalmente impostato.

- I sistemi di compensazione della pressione di esercizio posti in prossimità delle valvole di aperture/chiusura delle sezioni di barra permettono di mantenere la pressione costante in ciascuna singola sezione di barra di cui dispone l’irroratrice
e ciò implica che il livello di polverizzazione delle gocce erogate rimanga lo stesso indipendentemente dal numero di sezioni di barra attivate (Fig. 127).

Fig. 127 – Gruppo di regolazione dotato di sistemi di compensazione della pressione in prossimità di ogni sezione di barra (ritorni calibrati).

- I sistemi di compensazione della pressione in ciascuna sezione di barra devono poter essere regolati opportunamente in funzione della dimensione degli ugelli impiegati (ritorni calibrati).

24 Impiegare barre irroratrici equipaggiate con portaugelli multipli

Un gruppo portaugelli multiplo equipaggiato con diverse tipologie di ugelli permette di selezionare diverse serie di ugelli con differenti livelli di polverizzazione del liquido. Il
cambio degli ugelli può essere effettuato manualmente o in modo automatico. I gruppi portaugelli multipli possono alloggiare fino a cinque ugelli diversi.

- Utilizzare gruppi portaugelli multipli (Fig. 128) per poter variare facilmente il livello di polverizzazione del liquido, ad esempio aumentando la dimensione delle gocce in prossimità dei margini del campo al fine di limitare il rischio di deriva.

Nota:
I colori della maggior parte degli ugelli a polverizzazione per pressione oggi in commercio sono standardizzati a livello ISO: a ciascun colore corrisponde una dimensione del foro di uscita del liquido e di conseguenza un valore di portata (l/min) misurata ad una pressione di riferimento (bar). Ad esempio, gli ugelli di colore blu (03) hanno tutti una portata di 1.18 l/min a 3 bar. Fanno eccezione alcune serie di ugelli che non seguono la codifica ISO (es. ugelli Albuz serie ATR). Si ricorda che la codifica dei colori ISO è applicabile soltanto agli ugelli a polverizzazione per pressione, quindi non vale per i diffusori pneumatici e per gli ugelli centrifughi.

Fig. 128 – Esempi di gruppi portaugello multipli.

Regolazione dell’irroratrice
La corretta regolazione (taratura) dell’irroratrice dipende in gran parte dalla capacità dell’operatore e dalle opzioni disponibili sulla macchina irroratrice, sia in termini di dispositivi tecnici che sono presenti sull’irroratrice stessa, sia in termini di range di regolazione per i diversi parametri operativi. Secondo quanto previsto dalla Direttiva Europea 128/2009 sull’uso sostenibile degli agrofarmaci, gli agricoltori sono tenuti obbligatoriamente ad effettuare la taratura della macchina irroratrice con cadenza regolare. Si ricorda che regolare la macchina irroratrice significa assicurarsi che la macchina possa operare nel rispetto delle buone pratiche agricole.
I parametri operativi dell’irrotatrice devono essere controllati e regolati opportunamente al fine di distribuire la corretta quantità di agrofarmaco sulla coltura oggetto del trattamento.

La corretta regolazione dell’irrotatrice rende minime le potenziali perdite di prodotto nell’ambiente (per esempio quelle legate al fenomeno della deriva, Fig. 129).

Queste verifiche della corretta regolazione della macchina irrotatrice devono essere fatte più volte nel corso della stagione poiché le condizioni della coltura cambiano (es. entità della superficie fogliare, densità della chioma, ecc.). Inoltre i componenti dell’irrotatrice, in particolare gli ugelli, sono soggetti ad usurarsi e pertanto il loro deterioramento deve essere prevenuto al fine di garantire sempre la corretta funzionalità della macchina.

1) IMPIEGO UGELLI ANTIDERIVA = 4,4
2) PORTATA DEL VENTILATORE = 4,4
3) TIPO DI IRRORatrice = 4,1
4) SVILUPPO VEGETATIVO = 2,4
5) PROFILO DI DISTRIBUZIONE = 2,1

Fig. 129 - “Peso” di differenti variabili sull’entità della deriva in vigneto (rapporto tra valori max e min della deriva oltre 5 m dall’area trattata) – prove Disafa

25 Effettuare la regolazione dell’irrotatrice avendo cura di ridurre la deriva

- Effettuare sempre la verifica della corretta regolazione della macchina irrotatrice, utilizzando acqua pulita, prima di eseguire il trattamento.
- Prestare particolare attenzione al fine di evitare la contaminazione dell’ambiente: ad esempio prevedere misure per la mitigazione della deriva quali l’impiego di pressioni di esercizio contenute e l’uso di ugelli con livello di polverizzazione grossolano soprattutto in presenza di vento e/o quando si incrementa la velocità di avanzamento dell’irrotatrice.
Barre irroratrici per colture erbacee:

- Quando si impiegano ugelli convenzionali la velocità di avanzamento non deve essere superiore a 6 km/h (Fig. 130).
- Se si adottano velocità di avanzamento maggiori di 6 km/h impiegare ugelli a polverizzazione grossolana (es. ugelli a iniezione d’aria), barre irroratrici con manica d’aria o altri dispositivi in grado di ridurre la deriva.
- L’altezza di lavoro della barra non dovrebbe mai essere superiore a 50-60 cm (Fig. 131).

![Fig. 130 – Influenza della velocità di avanzamento sulla deriva (prove Disafa).](image-url)
Erratrici per vigneto e per frutteto:

- Ottimizzare la regolazione della macchina adottando il numero e la configurazione di ugelli più appropriati per ottenere un profilo di distribuzione adeguato al profilo della vegetazione.

- Portata, direzione e velocità del flusso d’aria devono essere regolate in funzione della geometria e della dimensione del bersaglio in modo tale da rendere minime le perdite di prodotto (Fig. 132).

- La regolazione delle macchine erratrici per il vigneto e per il frutteto deve essere verificata direttamente in campo utilizzando acqua pulita (Fig. 133).

- Valutare la qualità della distribuzione, la penetrazione delle gocce nella vegetazione, e l’entità della dispersione delle gocce erogate al di fuori del bersaglio avvalendosi di carte idrosensibili disposte all’interno, al di sopra ed al di sotto della vegetazione bersaglio del trattamento (Fig. 134).
Fig. 132 – Esemplificazione del concetto di aria utile.

Fig. 133 – Verifica in campo della regolazione della macchina irroratrice. Per una corretta regolazione è necessario operare sui deflettori (se presenti) fino a quando i nastri 1 sono in linea retta con quelli posti sulla vegetazione 1 facendo attenzione che i nastri di controllo 2 non siano interessati dal flusso d’aria. (immagine Syngenta).
Fig. 134 – L’impiego di cartine idrosensibili posizionate all’interno della vegetazione può essere utile per valutare la qualità della distribuzione.

26 Adottare la minima distanza tra ugelli e bersaglio in grado di garantire l’efficacia del trattamento

Barre irroratrici per colture erbacee:

Per quanto riguarda gli ugelli a fessura la distanza ottimale corrisponde a quella che consente di garantire la sovrapposizione dei getti erogati da ugelli adiacenti in modo che la distribuzione del liquido al di sotto della barra sia uniforme. Tanto più gli ugelli sono ravvicinati lungo la barra, tanto minore dovrà risultare la distanza tra ugelli e bersaglio.

- La distanza tra ugello e bersaglio dipende anche dall’angolo di apertura degli ugelli (ad esempio per gli ugelli con angolo di apertura di 110° occorre prevedere una distanza dal bersaglio di 50 cm; per ugelli con angolo di apertura di 80° occorre prevedere una distanza dal bersaglio di 70 cm, Fig. 135).

- Controllare l’altezza della barra rispetto al bersaglio sia prima che durante la fase di distribuzione della miscela fitoiatrica avvalendosi anche di appositi strumenti che agevolino tale operazione dalla posizione di guida dell’operatore.

- Per le barre irroratrici configurate per i trattamenti a banda o sulle file, regolare gli ugelli in modo tale da garantire la copertura della banda/fila mantenendo allo stesso tempo la minor distanza possibile tra ugelli e bersaglio.
Fig. 135 - Se si impiegano ugelli con ampio angolo di apertura è possibile mantenere la barra più vicina al terreno garantendo una adeguata sovrapposizione tra i getti e limitando le perdite per deriva.

Irroratrici per vigneto e per frutteto:

- Ottimizzare la distribuzione della miscela fitoiatrica in particolare rendendo minima la distanza tra ugelli/diffusori e bersaglio ed utilizzando configurazioni della macchina specificamente adeguate al bersaglio, in particolare nei primi stadi vegetativi della coltura
- Per ciascun trattamento, l’irroratrice deve essere adeguatamente regolata in funzione dello sviluppo della vegetazione.
- Nei primi stadi vegetativi (es. in vigneto) è prioritario ridurre il numero di filari trattati con un singolo passaggio dell’irroratrice, dirigere il liquido in modo preciso solo sul bersaglio e ridurre il rischio di generare deriva.
27 Impiegare la velocità di avanzamento minima utile per garantire l’efficacia del trattamento

Aumentando la velocità di avanzamento, si incrementa il tempo di esposizione delle gocce all’azione del vento durante il loro percorso verso il bersaglio. Inoltre si aumenta la turbolenza dell’aria intorno all’irroratrice. Ciò si traduce nella generazione di una "scia" di gocce più evidente che segue il passaggio dell’irroratrice. Cercare quindi sempre di rendere minimo tale effetto scia. Se si desidera operare con velocità di avanzamento più elevate, adottare sempre adeguate contromisure per limitare la generazione della deriva.

In particolare per le barre irroratrici:
- Incrementare la dimensione delle gocce (es. uso di ugelli antideriva).
- Ridurre l’altezza di lavoro della barra.
- Impiegare barre aeroassistite.
- Utilizzare barre schermate o "crop tilters".

Per gli atomizzatori:
- Incrementare la dimensione delle gocce (es. uso di ugelli antideriva).
- Regolare accuratamente la portata dell’aria del ventilatore.

28 Negli ugelli a polverizzazione per pressione, impiegare la pressione di esercizio più bassa in grado di garantire l’efficacia del trattamento

- Leggere attentamente le istruzioni fornite dal fabbricante di ugelli.
- Impiegare pressioni di esercizio per quanto possibile contenute (con ridotte pressioni di esercizio si producono gocce più grossolane, la frazione di gocce molto fini è minima e pertanto si ha un rischio di deriva limitato, Tab. 10, Fig. 136).

<table>
<thead>
<tr>
<th>grado di polverizzazione</th>
<th>VMD, µm</th>
<th>gocce < 141 µm, % in volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>molto fine</td>
<td><182</td>
<td>>57</td>
</tr>
<tr>
<td>fine</td>
<td>183-280</td>
<td>20-57</td>
</tr>
<tr>
<td>medio</td>
<td>281-429</td>
<td>6-20</td>
</tr>
<tr>
<td>grossolano</td>
<td>430-531</td>
<td>3-6</td>
</tr>
<tr>
<td>molto grossolano</td>
<td>532-655</td>
<td><3</td>
</tr>
<tr>
<td>estremamente grossolano</td>
<td>>655</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. 10 – Grado di polverizzazione delle gocce e rischio deriva.
Fig. 136 – Se sia aumenta la pressione la dimensione delle gocce diminuisce e, conseguentemente, le stesse risultano potenzialmente soggette alla deriva.

Utilizzo dell’irruratrice

Le irruratrici dovrebbero essere utilizzate in maniera tale da distribuire gli agrofarmaci esclusivamente sulla coltura oggetto del trattamento. Ciò richiede particolare attenzione lungo i margini del campo e, se necessario, l’adozione di misure di mitigazione della deriva.

29 Non distribuire mai direttamente la miscela fitoaiutrici sulle aree di rispetto (buffer zones) o su altre aree che non siano la coltura oggetto del trattamento

- Controllare l’etichetta degli agrofarmaci per verificarla distanza che occorre rispettare da corpi idrici ed aree sensibili nel corso della distribuzione (Tab. 11).
Tab. 11 - Estratto di etichetta contenente le indicazioni sulle zone di rispetto (www.bayercropscience.it).

<table>
<thead>
<tr>
<th>Cultura base</th>
<th>Viticoltura</th>
<th>Olivo</th>
<th>Agrumi, kiwi, frutta a guscio (12,5 g a.u.)</th>
<th>Grapes, pepper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereali, orzo, graminee, arbusti fruttiferi, arbusti medicinali</td>
<td>Aplicazioni precoci – dose min</td>
<td>5 (dose min)</td>
<td>5 (dose min)</td>
<td>5 (dose min)</td>
</tr>
<tr>
<td>Coltura base</td>
<td>Aplicazioni tardive – dose max</td>
<td>10</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Cerato, tabacco</td>
<td>10</td>
<td>15</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5 (dose min)</td>
<td>10</td>
<td>15</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Nessuna (dose min)</td>
<td>5 (dose min)</td>
<td>10</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>Resina</td>
<td>5 (dose min)</td>
<td>10</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>5 (dose min)</td>
<td>10</td>
<td>15</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Nessuna</td>
<td>5 (dose min)</td>
<td>10</td>
<td>15</td>
<td>50</td>
</tr>
</tbody>
</table>

Avvertenza: Per i trattamenti in pieno campo mantenere una fascia di rispetto pari alla fascia di rispetto (metri) con dispositivi ad induzione della derva fino al 90%.
Durante il trattamento del filare di bordo in vigneto/frutteto chiudere l’erogazione degli ugelli rivolti verso l’esterno dell’ appezzamento (Fig. 137).

Fig. 137 – Interruzione dell’erogazione sul lato esterno dell’ultimo filare dell’ appezzamento.

- Nelle barre irroratrici chiudere le sezioni di barra che vengono a trovarsi al di fuori dell’area bersaglio.
- Nelle irroratrici per vigneto/frutteto, in particolare per quelle scavallanti, il numero delle sezioni di barra dovrebbe essere tale da garantire la riproducibilità della forma del profilo di distribuzione erogato anche chiudendo una o più sezioni di barra e dovrebbe permettere di seguire la forma dell’ appezzamento (es. triangolo).
- Prestare particolare attenzione ai margini dell’ appezzamento ed impiegare tecniche e dispositivi per ridurre la deriva.
MISURE PER RIDURRE LA DERIVA GENERATA DALLE BARRE IRRORATRICI

Attrezzatura per l’irrorazione

30 Impiegare irroratrici dotate di sistemi di stabilizzazione della barra efficienti

Le barre irroratrici prive di sistemi di stabilizzazione efficienti tendono ad oscillare a causa delle asperità del terreno su cui si muove la macchina (Fig. 138). Maggiore è l’altezza della barra, maggiore è il rischio di generare deriva dovuto a queste oscillazioni.

Fig. 138 – Impiegare barre stabili per contenere la deriva.

- Utilizzare barre equipaggiate con sospensioni o sistemi di stabilizzazione in grado di assorbire le sollecitazioni provocate dall’avanzamento della macchina su una superficie accidentata.
- Ridurre la pressione di gonfiaggio dei pneumatici per assorbire meglio le asperità del terreno. Verificare le indicazioni dei costruttori di pneumatici.
Regolazione dell’irradiatorice

31 Sulle barre irroratrici equipaggiate con manica d’aria, regolare opportunamente la velocità del flusso d’aria in funzione delle condizioni in cui si effettua il trattamento

- Ridurre la velocità dell’aria quando si impiegano le barre irroratrici equipaggiate con manica d’aria su terreno nudo o su vegetazione poco sviluppata. Ciò al fine di evitare la generazione di polvere.
- Aumentare la portata del flusso d’aria quando è necessario ottenere una maggiore penetrazione delle gocce in colture dense e sviluppate.
- Controllare il manuale di istruzioni per regolare adeguatamente il flusso d’aria in funzione delle condizioni in cui si opera il trattamento.

32 Sulle barre irroratrici equipaggiate con manica d’aria, regolare opportunamente l’inclinazione degli ugelli rispetto a quella del flusso d’aria in funzione delle condizioni in cui si effettua il trattamento

- In presenza di vento di direzione concorde a quella di avanzamento dell’irradiatorice inclinare il flusso d’aria in avanti.
- In presenza di vento di direzione contraria a quella di avanzamento dell’irradiatorice inclinare il flusso d’aria all’indietro (Fig. 139).

- In presenza di vento di direzione laterale a quella di avanzamento dell’irradiatorice oppure quando il vento è assente, mantenere verticale il flusso d’aria oppure, solo se si opera con velocità di avanzamento elevata (> 8 km/h) inclinarlo all’indietro.
- Indicazioni per regolare l’inclinazione del flusso d’aria in funzione delle condizioni della coltura:
Terreno nudo / vegetazione scarsamente sviluppata: inclinare il flusso d’aria all’indietro per evitare che il liquido erogato rimbalzi verso la barra.

Coltura densa pienamente sviluppata: regolare inclinazione e intensità del flusso d’aria in modo tale da favorire l’apertura della vegetazione e la penetrazione delle gocce al suo interno.

- Se mutano le condizioni di velocità e direzione del vento è probabile che anche l’orientamento del flusso d’aria debba essere adeguato. Pertanto tenere sempre attentamente sotto controllo le condizioni ambientali in cui si opera la distribuzione.
- Controllare il manuale di istruzioni per verificare ulteriori eventuali indicazioni specifiche relative alla regolazione ottimale del flusso d’aria.
MISURE PER RIDURRE LA DERIVA GENERATA DAGLI ATOMIZZATORI

Fattori ambientali

33 Utilizzare le reti antigrandine anche in funzione di barriera fisica per contenere la deriva

Le reti antigrandine possono esercitare un'azione di barriera nei confronti della deriva riducendo la dispersione delle goccioline al di fuori dell’area trattata (Fig. 140).

Fig. 140 – Trattamento antiparassitario in frutteto dotato di reti antigrandine.

Attrezzature per l’irrorazione

34 Limitare l’utilizzo delle irroratrici tipo “cannone”

Le macchine irroratrici tipo “cannone” (Fig. 141) generano una grande nuvola di goccioline che non può essere controllata ed è esposta all’azione del vento ambientale, con grave rischio di produrre deriva. Queste tipologie di irroratrici non devono essere impiegate nelle aree dove la deriva può rappresentare un rischio per l’ambiente. Nel caso in cui non si possa evitare l’impiego delle irroratrici tipo “cannone” verificare dove sono situate le aree sensibili rispetto all’area oggetto del trattamento e adottare tutte le precauzioni utili a limitare la deriva.

35 Utilizzare irroratrici equipaggiate con sistemi per la regolazione della direzione del flusso d’aria

Le seguenti tipologie di machine irroratrici permettono di orientare il flusso d’aria in modo adeguato al profilo della vegetazione:
Iroratrici a torretta con deflettori dell’aria (Fig. 142A);
Iroratrici con convogliatori dell’aria multipli e flessibili, con diffusori dell’aria regolabili in altezza e distanza reciproca (Fig. 142B).

Fig. 142 – Iroratrice a torretta con deflettori dell’aria (A) e irroratrice con diffusori orientabili (B).

- Utilizzare i dispositivi e le opzioni per la regolazione dell’irroratrice utili per distribuire la miscela fitoiatrica in maniera precisa tenendo conto della dimensione, geometria e densità della vegetazione.
- Evitare le perdite di prodotto al di fuori del bersaglio (irrorando ad esempio al di sopra o al di sotto della chioma).

Utilizzare irroratrici che permettono di posizionare e di orientare opportunamente gli ugelli, di regolare la velocità e la direzione del flusso d’aria ed il profilo di distribuzione (es. attraverso la selezione del numero di ugelli attivi). Al fine di ottenere una distribuzione uniforme e di ridurre l’entità della deriva occorre seguire le seguenti regole:

- Attivare un numero di ugelli appropriato per evitare di indirizzare i getti al di sopra o al di sotto del profilo della vegetazione (Fig. 143);
- Regolare la posizione e l’orientamento degli ugelli in maniera tale da ottenere un profilo di distribuzione uniforme lungo il profilo della vegetazione.
- Regolare la direzione e la velocità dell’aria in funzione dello spessore e della densità della vegetazione per evitare che le gocce erogate oltrepassino il filare.
Fig. 143 – Il numero di ugelli attivi deve essere legato alle dimensioni del bersaglio da trattare.

La corretta regolazione dell’aria si ottiene quando le gocce erogate penetrano completamente nella chioma e non si apprezza alcuna dispersione di gocce oltre il filare trattato.

- Per valutare il livello di penetrazione delle gocce nella vegetazione, prima di eseguire il trattamento, effettuare una valutazione visiva della regolazione dell’aria nel frutteto/vigneto oggetto del trattamento utilizzando acqua pulita.
- Indirizzare il flusso d’aria all’indietro rispetto alla direzione d’avanzamento nei primi stadi vegetativi delle colture, quando le chiome sono poco sviluppate e quando il vento è scarso.
- Quando la vegetazione è più densa e si impiegano velocità dell’aria più elevate, oppure in condizioni di vento apprezzabile, indirizzare il flusso d’aria ortogonalmente alla direzione di avanzamento dell’irroratrice.
- In condizioni di vento con direzione trasversale a quella dei filari passare con l’irroratrice in prossimità del filare sopravento.
36 Utilizzare irroratrici equipaggiate con sistemi per la regolazione della velocità del flusso d’aria

Regolare la velocità dell’aria in funzione della dimensione e della geometria del bersaglio e del relativo stadio di sviluppo vegetativo.

Ciò può essere fatto attraverso:

- Angolazione appropriata delle pale del ventilatore;
- Regolazione della velocità di rotazione del ventilatore attraverso l’apposito cambio di velocità (quando presente);
- Regolazione del regime di rotazione della presa di forza del trattore.

La velocità del flusso d’aria dovrebbe essere regolata tenendo conto della velocità di avanzamento dell’irroratrice, in modo tale da ottenere la completa penetratione dell’aria all’interno della vegetazione. Ciò si ottiene quando le gocce erogate penetrano completamente nella chioma e non si apprezza alcuna dispersione di gocce oltre il filare trattato (vedi linea guida 35).

- Impiegare velocità dell’aria ridotte nei primi stadi vegetativi e in presenza di piante con scarso sviluppo vegetative (es. nuovi impianti, Fig. 144).

Fig. 144 – Effetto della velocità dell’aria in uscita al ventilatore sull’entità della deriva (prove Disafa in frutteto).

- Incrementare la velocità dell’aria quando la vegetazione è più densa e sviluppata, quando si adottano velocità di avanzamento più elevate ed in presenza di vento apprezzabile.
- In condizioni di vento con direzione trasversale a quella dei filari passare con l’irroratrice in prossimità del filare sopravento.

37 Utilizzare irroratrici equipaggiate con sistemi per la chiusura del flusso d’aria su ciascun lato della macchina
- Al fine di evitare di indirizzare le gocce erogate al di fuori dell’area trattata quando si tratta il filare esterno dell’appezzamento è raccomandabile impiegare una macchina irroratrice che permetta di chiudere le sezioni di uscita dell’aria sia sul lato destro che sul lato sinistro (Fig. 145).

![Fig. 145 – Irroratrice equipaggiata con un sistema che permette di chiudere le sezioni di uscita dell’aria sia sul lato destro sia sul lato sinistro.](image)

38 Impiegare irroratrici equipaggiate con ugelli attivabili individualmente
- Regolare il profilo di distribuzione dell’irroratrice in funzione dello sviluppo vegetativo del bersaglio (in particolare nei primi stadi vegetativi) selezionando opportunamente il numero di ugelli attivi (vedi anche Fig. 143).
- Chiudere gli ugelli il cui getto non è orientato verso il bersaglio (effettuare l’operazione manualmente o attraverso sistemi automatici quando presenti).
- La chiusura di uno o più ugelli può essere utile anche per selezionare una sola fascia della vegetazione dove effettuare la distribuzione (es. trattamenti ai grappoli in vigneto).
- Tenere presente che la chiusura di uno o più ugelli comporta la modifica del volume distribuito e richiede pertanto nuovi calcoli per preparare la miscela fitoiottrica con l’esatta quantità di agrofarmaco da applicare per unità di superficie.
Regolazione dell’irroratrice

39 Regolare il profilo di distribuzione in funzione delle caratteristiche del bersaglio

- Cercare di ottenere un profilo di distribuzione che segua quanto più possibile il profilo della vegetazione oggetto del trattamento (Fig. 146).

![Diagramma di distribuzione](image1.png)

Fig. 146 - Il diagramma di distribuzione dovrebbe il più possibile sovrapporsi al profilo della pianta da trattare.

- Impiegare cartine idrosensibili per ottenere indicazioni circa la qualità della distribuzione delle gocce sulle parti esterne ed interne della vegetazione e per valutare la penetrazione delle gocce nella chioma in funzione di differenti regolazioni del numero di ugelli/diffusori attivi, della portata e dell’orientamento degli ugelli e del flusso d’aria.

- Banchi prova verticali possono essere impiegati come ausilio per selezionare/regolare il profilo di distribuzione più adatto (Fig. 147).

![Banco prova verticale](image2.png)

Fig. 147 – Utilizzo del banco prova verticale per l’individuazione del profilo di distribuzione più adatto.
• Adattare la regolazione degli ugelli (posizione e orientamento) sull’irratoratrice in funzione della forma di allevamento e dello stadio di sviluppo vegetativo della coltura (Fig. 148).

![Fig. 148 – Esempi di regolazione degli ugelli in funzione del bersaglio da trattare.](image)

40 Regolare opportunamente la velocità e la direzione del flusso d’aria in funzione delle condizioni presenti al momento del trattamento

• Evitare di impiegare volumi e velocità dell’aria eccessivi che possano incrementare il rischio di generare deriva quando si trattano chiome poco sviluppate o colture nei primi stadi vegetativi.

• Ridurre la velocità dell’aria agendo sul cambio di velocità del ventilatore.

• Regolare opportunamente l’inclinazione delle pale nei ventilatori assiali (Fig. 149) ed orientare correttamente i deflettori dell’aria in maniera tale che il flusso in uscita dalla macchina sia indirizzato interamente verso il profilo del bersaglio (Fig. 150).

![Fig. 149 – Regolazione dell’inclinazione delle pale.](image)
Fig. 150 – Regolazione dell’inclinazione dei deflettori dell’aria.

- Quando si effettua la distribuzione sul bruno o nei primissimi stadi vegetativi (in assenza di foglie) considerare l’opportunità di spegnere il ventilatore.

41 Adattare la velocità di avanzamento al volume ed alla velocità dell’aria generata dal ventilatore

La quantità d’aria che colpisce il bersaglio deve essere modulata al fine di rendere massima la penetrazione delle gocce nella vegetazione limitando al minimo la quantità di gocce che oltrepassano il filare e quindi la generazione di deriva.

- In termini generali, la velocità dell’aria misurata in prossimità del bersaglio dovrebbe risultare pari a 6-8 m/s in vigneto (in pieno sviluppo vegetativo, Fig. 151) e pari a 10-12 m/s in frutteto (in pieno sviluppo vegetativo).

Fig. 151 - Interazione velocità dell’aria e deposito sul bersaglio (prove Disafa su vite).
• La velocità dell’aria dovrebbe essere regolata tenendo conto della velocità di avanzamento dell’irratrice, in modo tale da garantire la penetrazione delle gocce nel filare ma da evitare la dispersione oltre il filare stesso (vedi linea guida 36).

Utilizzo dell’irratrice

42 Chiudere o ridurre l’erogazione del flusso d’aria verso l’esterno dell’appezzamento quando si trattano i filari di bordo oppure quando si opera in prossimità di aree sensibili all’inquinamento

• Utilizzare i dispositivi per la chiusura dell’erogazione dell’aria su un lato dell’irratrice quando ci si avvicina alle aree sensibili ed ai filari esterni dell’appezzamento (Fig. 152 e Fig. 153), avendo cura di non indirizzare il flusso d’aria verso l’esterno del campo al fine di limitare la deriva.
• Prendere in considerazione la possibilità di gestire automaticamente il flusso d’aria in modo indipendente sui due lati dell’irratrice.
• Ridurre la velocità di rotazione del ventilatore quando si trattano i filari più esterni del vigneto/frutteto (vedi anche linea guida 40).

Fig. 152 – Distribuzione sul lato esterno dell’ultimo filare dell’appezzamento.
Fig. 153 – Gestione dell’irrorazione in prossimità di un’area sensibile (es. pozzo) e della presenza meno del vento.
ULTERIORI INDICazioni PER RIDURRE LA DERIVA GENERATA DALLE BARRE IRRORATRICI

Generazione dello spray

A1 Impiegare ugelli tipo "Twin fluid"

- Impiegare ugelli tipo “Twin fluid” per poter cambiare la portata del liquido e la dimensione delle gocce in modo indipendente (Fig. 154)
- Selezionare l’erogazione di gocce più grossolane in prossimità dei margini del campo adiacenti alle aree sensibili all’inquinamento.

Tenere presente che, impiegando gli ugelli tipo “Twin fluid” l’uniformità di distribuzione trasversale al di sotto della barra tende a peggiorare se si utilizzano gocce molto grandi. Seguire attentamente le indicazioni del costruttore.

A2 Preferire l’impiego di ugelli a specchio per la distribuzione degli agrofarmaci su terreno nudo

Per i trattamenti di pre-emergenza su suolo nudo considerare l’impiego di ugelli a specchio che producono gocce più grossolane.

Gli ugelli a specchio sono caratterizzati da un ampio diagramma di distribuzione (Fig. 155) e da una buona sovrapposizione fra getti adiacenti. Ciò consente di ottenere una distribuzione trasversale uniforme anche operando con altezze di lavoro della barra ridotte.

Fig. 154 - Ugello “twin fluid”.
Fig. 155 – Diagramma generato da un ugello a specchio.

Attrezzature per l’irrorazione

A3 Impiegare le barre irroratrici equipaggiate con manica d’aria sulla coltura sviluppata

- L’azione della manica d’aria contrasta l’effetto del vento ambientale e della turbolenza generata dall’avanzamento dell’irroratrice.
- La manica d’aria può essere sfruttata per prolungare il periodo di impiego dell’irroratrice in condizioni meteorologiche limite per poter eseguire il trattamento (Fig. 156).

Fig. 156 – Distribuzione senza e con attivazione della manica d’aria.

- Le barre irroratrici equipaggiate con manica d’aria generano un flusso d’aria lungo la barra stessa orientato verso il basso e con portata d’aria di 1400-2000 m³/h/m che ha la funzione di favorire il trasporto delle gocce verso il bersaglio.

Nota: La potenziale riduzione della deriva è dell’ordine del 75% quando la manica d’aria è impiegata in combinazione con ugelli antideriva ad iniezione d’aria, del 50% con ugelli a fessura convenzionali.
A4 Impiegare barre irroratrici schermate

- L’impiego delle barre schermate permette di proteggere le gocce erogate dagli ugelli, per almeno parte del loro percorso verso il bersaglio, dall’azione del vento (Fig. 157).
- Le schermature possono anche essere progettate in modo tale da indirizzare i flussi d’aria lungo la barra verso il basso.
- Un altro sistema di schermatura per le barre irroratrici può essere quello di realizzare piccoli tunnel adattati all’ampiezza delle colture disposte a file (es. fragole).

Fig. 157 – Irroratrice con schermatura.

A5 Utilizzare barre irroratrici equipaggiate con sistemi tipo "crop-tilter"

- I ‘Crop Tilters’ sono particularmente utili nelle colture cerealicole dove è richiesta un’elevata penetrazione del prodotto nella vegetazione. Questi dispositivi permettono di piegare la vegetazione e di favorire la penetrazione dello spray (Fig. 158).

Nota: questi dispositivi, noti in Nord Europa come Släpwdk possono ridurre la deriva fino al 90% se impiegati con ugelli antideriva e fino al 75% con ugelli convenzionali. Seguire attentamente le istruzioni del costruttore.
Fig. 158 – Il crop tilter apre la vegetazione per favorire una migliore penetrazione delle gocce (foto: http://www.vibyteknik.se)

A6 Impiegare barre irroratrici progettate per effettuare la distribuzione solo lungo le file della coltura

Utilizzare barre irroratrici che distribuiscono solo lungo le file quando appropriato.

Nota: questo tipo di barre irroratrici per applicazioni localizzate permette di ridurre la quantità di agrofarmaco impiegata e l’entità della superficie irrorata. Sono generalmente abbinate a seminatrici (Fig. 159) o ad altre macchine operatrici per il controllo meccanico delle infestanti. Montano particolari ugelli (tipo “Even”) con angolo di apertura ridotto (60°-80°).

Fig. 159 – Irroratrice per diserbo localizzato abbinata a seminatrice.

A7 Impiegare barre irroratrici progettate per effettuare la distribuzione solo lungo le file della coltura e schermate

- Le barre irroratrici per applicazioni localizzate e schermate permettono di ridurre la quantità di agrofarmaco impiegata e l’entità della superficie irrorata, operando solo lungo le file della coltura (Fig. 160).
- Possono essere anche impiegate per applicare erbicidi non selettivi nelle interfile, poiché le schermature proteggono la coltura sulla fila.

Fig. 160 – Diserbo schermato sulla fila. (foto: www.farmersguardian.com).

A8 Impiegare irroratrici dotate di sistemi di identificazione del bersaglio (es. sensori)

Le irroratrici equipaggiate con sensori per identificare il bersaglio (es. GreenSeeker®) sono in grado di distinguere in tempo reale la presenza delle foglie da irrorare al di sotto della barra e gli ugelli possono essere attivati singolarmente solo in presenza del bersaglio (Fig. 161).

Fig. 161 - irroratrice dotate di sensori per l'identificazione del bersaglio.
A9 Impiegare sistemi automatici per il controllo dell'altezza di lavoro della barra
In particolare per le barre più lunghe, la presenza di sensori che consentono di controllare automaticamente l'altezza di lavoro della barra impostata permette di mantenere stabile tale valore nel corso del trattamento.

A10 Utilizzare barre irroratrici dotate di sistemi GPS
L’impiego del GPS consente:
- La chiusura automatica degli ugelli in corrispondenza delle capezzagne durante le fasi di svolta (Fig. 162).
- La regolazione automatica dei parametri operativi dell’irroratrice (es. pressione di esercizio, numero di ugelli attivi, portata del ventilatore) in base alla posizione della macchina nel campo (es. in prossimità di aree sensibili).

Nota: i dispositivi tecnologici in grado di supportare l’agricoltura di precisione saranno sempre più diffusi in futuro, pertanto gli utenti ed i formatori sono incoraggiati a tenersi aggiornati sulla materia.
A 11 Considerare la possibilità di impiegare barre umettanti per il controllo selettivo delle erbe infestanti

Le barre umettanti possono essere impiegate per eliminare le infestanti che sono più alte della coltura (es. riso crudo). Tali dispositivi consentono di eliminare il rischio di deriva poiché non prevedono la generazione dello spray. Nota: si tratta di soluzioni tecniche impiegabili solo in condizioni specifiche (Fig. 163).
ULTERIORI INDICAZIONI PER RIDURRE LA DERIVA GENERATA DAGLI ATOMIZZATORI

Attrezzatura per l’irrorazione

B1 Utilizzare irroratrici schermate con sistemi di ricircolo della miscela fitoiatrica (es. irroratrici a tunnel)

Le seguenti tipologie di macchine irroratrici dotate di sistemi di schermatura delle gocce erogate permettono di contenere la deriva poiché, durante l’esecuzione del trattamento, proteggono le gocce erogate dall’azione del vento ambientale:

- a) **Irorratrici a tunnel di tipo convenzionale**;
- b) **Irorratrici a tunnel con elementi per facilitare la separazione ed il recupero delle gocce (es. schermi lamellari, Fig. 164)**;
- c) **Irorratrici a tunnel di tipo scavallante con elementi per facilitare la separazione ed il recupero delle gocce (es. schermi lamellari)**;
- d) **Irorratrici di tipo scavallante con schermi riflettenti per le gocce**.

![Fig. 164 - Esempi di irroratrici con sistema di recupero del liquido che oltrepassa il filare.](image)

Queste tipologie di macchine irroratrici possono essere inoltre equipaggiate con sistemi di ricircolo del liquido recuperato grazie alle schermature, minimizzando così le perdite a terra e favorendo risparmi di prodotto fitosanitario.

Quando si impiegano irroratrici schermate con sistemi di recupero si consideri che:

1. La quantità di miscela riciclata risulta più elevata nei primi stadi vegetative della coltura.
2. Le perdite di prodotto possono essere recuperate, ad esempio, anche in corrispondenza di fallanze lungo i filari.
 - Le irroratrici a tunnel, o dotate di pannelli per la schermatura delle gocce, consentono di ridurre i volumi di distribuzione ed il rischio di deriva. Si raccomanda di impiegare ugelli antideriva ad iniezione d’aria, preferibilmente del tipo a fessura.
Tenere presente che l’impiego di irroratrici a tunnel con ricircolo può comportare consistenti residui di miscela inutilizzata nel serbatoio a fine trattamento poiché non è semplice prevedere l’entità del volume di miscela che verrà riciclato nel corso del trattamento.

L’uso di irroratrici a tunnel con ricircolo richiede pertanto la presenza di sistemi efficienti per la gestione dei residui di miscela fitoiastrica al fine di evitare che la riduzione della deriva da una parte si traduca in un maggiore rischio di inquinamento puntiforme dall’altra.

B2 Preferire l’impiego di irroratrici scavallanti in grado di effettuare il trattamento completo di uno o più filari con un singolo passaggio della macchina

Per ottenere una distribuzione sul bersaglio più uniforme e per ridurre il rischio di deriva quando si opera con irroratrici scavallanti in grado di trattare più filari contemporaneamente occorrerebbe seguire queste regole:

- Preferire l’impiego di irroratrici scavallanti che trattano entrambi i lati del filare nello stesso passaggio (per esempio meglio trattare con un solo passaggio due filari completi, da entrambi i lati, piuttosto che quattro da un solo lato, Fig. 165)

![Irroratrice scavallante che tratta due filari completi per volta.](image)

- Attivare lo stesso numero di ugelli ed orientarli in modo identico su entrambi i lati del filare.
- Mantenere una distanza uniforme tra ugello e bersaglio lungo tutto il profilo verticale della vegetazione.
- Se si applica la miscela contemporaneamente sui due lati del filare orientare opportunamente gli ugelli e regolare il flusso d’aria in modo tale da creare turbolenza all’interno della vegetazione per favorire il deposito delle gocce sul bersaglio.
• Evitare di soffiare le gocce erogate attraverso la vegetazione e di farle fuoriuscire dal filare.

B3 Utilizzare irroratrici provviste di sensori per il riconoscimento della presenza del bersaglio
• L’impiego di sensori in grado di identificare la presenza/assenza del bersaglio consente di chiudere l’erogazione degli ugelli in corrispondenza di buchi nella vegetazione e di fallanze lungo i filari e quindi di prevenire l’esposizione di consistenti quantità di gocce all’azione del vento ambientale (Fig. 166).

Fig. 166 – Irroratrice con sensori per il riconoscimento del bersaglio (Disafa – Progetto ISAFRUIT).
• Sensori più sofisticati, in grado di valutare la geometria e la densità della vegetazione, consentono un’ancor maggiore riduzione della deriva grazie alla capacità di adeguare in tempo reale la portata degli ugelli ed il profilo di distribuzione dell’irroratrice alla struttura della chioma.

B4 Utilizzare irroratrici dotate di sistemi GPS
L’impiego di sistemi GPS consente:
• La chiusura automatica degli ugelli in corrispondenza delle capezzagne durante le fasi di svolta.
• La regolazione automatica dei parametri operativi dell’irroratrice (es. pressione di esercizio, numero e tipo di ugelli attivi, portata del ventilatore) in base alla posizione della macchina nel campo o alla velocità del vento (es. in prossimità di aree sensibili, Fig. 167).
Fig. 167 – Irroratrice con sensori per l’adattamento della distribuzione alle condizioni ambientali

Nota: i dispositivi tecnologici in grado di supportare l’agricoltura di precisione saranno sempre più diffusi in futuro, pertanto gli utenti ed i formatori sono incoraggiati a tenersi aggiornati sulla materia
LA VALUTAZIONE DEL RISCHIO DERIVA: DRIFT EVALUATION TOOL

Con l’obiettivo di definire in tempo reale l’entità del rischio di deriva in specifiche condizioni operative (climatiche e agroambientali) e di fornire una guida alla scelta dei parametri operativi dell’irroratrice per limitare il rischio di deriva, nell’ambito del progetto Topps Prowadis è stato studiato e realizzato uno specifico strumento informatico “user friendly” il Drift Evaluation Tool (DET).

Tale software, disponibile gratis on line (ma anche scaricabile e utilizzabile in locale) all’indirizzo www.topps-drift.org è realizzato in tre versioni: per barre irroratrici, atomizzatori da vigneto e atomizzatori da frutteto. L’utente comunica con il software tramite la sua interfaccia visiva semplice ed intuitiva. E’ guidato dalla home page (Fig. 168) per altre tre pagine consecutive in cui in troverà varie opzioni da selezionare in base a quelle che meglio descrivono la sua specifica realtà.

Fig. 168 – Videata in accesso al DET.

Una volta effettuata la scelta della tipologia di macchina irroratrice che si utilizza (ad esempio colture erbacee), nella prima pagina, l’utente indica il sito di applicazione (irrorazione all’interno o al di là della zona di rischio). Se si opera all’interno dell’area di rischio, si passa alla pagina successiva ove si inseriscono le condizioni meteo e di campo
(direzione e velocità del vento, temperatura e umidità dell'aria, altezza delle colture, ecc). Si ottiene così un **primo valore di entità del rischio deriva** atteso nelle condizioni metereologiche e di campo indicate operando con un’irroratrice in condizioni standard (Fig. 169). Il livello di entità del rischio deriva può essere **ridotto** (evidenziato graficamente in verde), **medio** (in giallo) o **elevato** (in rosso). In tal modo l’utente può immediatamente vedere come il livello di rischio si modifica a seguito di qualsiasi cambiamento delle condizioni meteorologiche e di campo. A seconda del livello di rischio raggiunto vengono, quindi, fornite delle raccomandazioni pratiche (colonna a destra della videata).

Nell’ultima pagina (Fig. 170), si inseriscono le caratteristiche tecniche ed i parametri operativi dell’irroratrice impiegata e si ottiene un **secondo valore entità del rischio di deriva** ottenuto dalla combinazione tra condizioni ambientali e parametri operativi dell’irroratrice. In base al valore dell’indice di deriva finale ottenuto (combinazione tra i due precedenti) vengono fornite le raccomandazioni sugli accorgimenti che è necessario adottare per contenere la deriva nel contesto specifico. E’ possibile anche simulare gli effetti derivanti dall’adozione di differenti tecniche di distribuzione e parametri operativi. Quando l’entità del rischio deriva legato alle condizioni metereologiche e di campo supera il valore di 100% (rischio alto) è sempre consigliabile adottare opportune misure di mitigazione. Se parallelamente anche l’entità del rischio deriva legato alle modalità di distribuzione supera il 100% è indispensabile adottare le migliori misure di mitigazioni disponibili.

In tutte le fasi del processo di diagnosi l’utente è assistito da uno specifico servizio di assistenza; facendo clic sull’icona "informazioni", è possibile infatti ottenere:

1. spiegazioni sul significato della diagnosi di rischio deriva,
2. interpretazione dei valori di rischio di deriva,
3. informazioni pratiche su altri elementi, come aree sensibili, zone cuscinetto, zone di rispetto.

L’applicativo Drift Evaluation Tool, è stato sviluppato per aiutare tutti coloro che si occupano direttamente di distribuzione di prodotti antiparassitari a prendere le migliori decisioni al fine di un uso sostenibile degli stessi e per assistere i consulenti e i formatori nelle loro attività volte a sensibilizzare gli agricoltori sulla rischio deriva e sulle relative misure di mitigazione.
Fig. 169 – Videate per l’inserimento dei dati relativi alle condizioni di metereologiche e di campo.
Fig. 170 – Esempi di videata con parametri operativi dell’irroratrice e indicazione delle relative raccomandazioni.
LA SOSTENIBILITÀ AMBIENTALE DELLE IRRORATRICI: “IL PROGETTO TOPPS-EOS”

IL SOFTWARE EOS

Come già ricordato ad inizio volume in sede di presentazione dei progetti Topps, nell’ambito di Topps-EOS è stato realizzato un software denominato EOS (Environmentally Optimised Sprayer) con l’obiettivo di fornire uno strumento informatico in grado di valutare la compatibilità ambientale delle macchine irroratrici in funzione dei dispositivi tecnici presenti (o non presenti) sulle stesse. In sintesi, la potenziale mitigazione del rischio ambientale derivante dall’impiego dell’irroratrice oggetto della valutazione è costituta dalla somma delle varie mitigazioni potenziali delle differenti soluzioni tecniche presenti sull’irroratrice stessa (Doruchowski et al. 2014).

L’applicazione EOS è stata sviluppata grazie all’attività di un gruppo di lavoro europeo costituito da vari esperti in rappresentanza dei settori della ricerca, della consulenza, dei servizi, delle industrie chimiche e dei costruttori di macchine irroratrici. Tale sviluppo si è esplicato attraverso tre fasi:

1. identificazione delle potenziali aree di rischio ambientale legate alle caratteristiche costruttive e all’utilizzo dell’irroratrice;
2. la configurazione dei contenuti e della struttura del software;
3. l’elaborazione dell’algoritmo del software.

Il software EOS è strutturato come un questionario suddiviso in sezioni e sottosezioni. In pratica viene chiesto all’utente di effettuare un percorso attraverso le videate del programma e di selezionare i dispositivi tecnici, utili a mitigare il rischio di inquinamento dell’ambiente da agrofarmaci, che sono presenti (o non sono presenti) sullo specifico modello di irroratrice in esame. In base alle voci selezionate dall’utente viene elaborato un punteggio (EOS value) indicativo di quanto la macchina irroratrice è “rispettosa” dell’ambiente.

Per costruire il meccanismo di assegnazione dei punteggi EOS la base di partenza è stata l’analisi delle possibili vie di contaminazione delle acque superficiali con i prodotti fitosanitari, legate sia ai fenomeni di inquinamento puntiforme che a quelli di inquinamento diffuso, e la valutazione di quanto i dispositivi tecnici presenti sulle irroratrici possano concorrere a mitigare il rischio di contaminazione. Ciò ha permesso di definire (Tab. 12) cinque “aree di rischio”, a ciascuna delle quali è stato assegnato uno specifico peso in funzione della tipologia di macchina irroratrice (per colture erbacee o per colture arboree).
Nell’ambito di ciascuna area di rischio, caratterizzata dal relativo peso ambientale, sono individuati una serie di problemi, a loro volta contrassegnati ciascuno da un proprio peso. Selezionando un problema (es. pulizia interna completa dell’irroratrice in campo), si accede all’elenco delle tecnologie in grado di far fronte a tale problema, anch’esse caratterizzate da un proprio peso “ambientale”.

Selezionando successivamente la singola tecnologia (es. serbatoio lava impianto) si accede all’elenco delle soluzioni tecniche previste, a ciascuna delle quali corrisponde un voto (0 alla tecnologia meno valida dal punto di vista ambientale e 10 a quella più valida, Fig. 171).

Quando l’utente seleziona la specifica soluzione tecnica presente sulla propria macchina irroratrice, il software calcola il contributo della stessa al punteggio EOS complessivo tenendo conto del voto assegnato a quella soluzione tecnica e dei fattori di peso legati rispettivamente alla tecnologia, al problema ed all’area di rischio corrispondenti (Fig. 172). Pesi specifici e voti sono parte della struttura del software e non sono visualizzabili dall’utente.

Tab. 12 Peso specifico delle aree di rischio definite in ambito EOS per barre irroratrici ed atomizzatori

<table>
<thead>
<tr>
<th>Area di rischio</th>
<th>Peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminazione interna dell’irroratrice</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problemi</th>
<th>Peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulizia interna completa dell’irroratrice in campo</td>
<td>45</td>
</tr>
<tr>
<td>Rimozione dei residui di agrofarmaci concentrati</td>
<td>30</td>
</tr>
<tr>
<td>Omogeneità della miscela fitoattiva</td>
<td>10</td>
</tr>
<tr>
<td>Pulizia dei filtri</td>
<td>10</td>
</tr>
<tr>
<td>Volume residuo nelle tubazioni</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tecnologie</th>
<th>Peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbatoio lava impianto</td>
<td>40</td>
</tr>
<tr>
<td>Sistema di lavaggio interno</td>
<td>40</td>
</tr>
<tr>
<td>Serbatoio principale</td>
<td>10</td>
</tr>
<tr>
<td>Ugello/lava serbatoio</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soluzioni tecniche</th>
<th>Voto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbatoio lava impianto non disponibile</td>
<td>0</td>
</tr>
<tr>
<td>Serbatoio lava impianto sottodimensionato</td>
<td>3</td>
</tr>
<tr>
<td>Serbatoio lava impianto con capacità standard (secondo norma ISO 16119-2)</td>
<td>8</td>
</tr>
<tr>
<td>Serbatoio lava impianto con capacità di almeno il 20% superiore allo standard</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 171- Esempio di schema per l’assegnazione dei punteggi EOS per una barra irroratrice
Contenuto di rischio

Peso (%)

- Contaminazione interna dell’irratrici 45

Problemi

<table>
<thead>
<tr>
<th>Problema</th>
<th>Peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulizia interna completa dell’irratrici in campo</td>
<td>45</td>
</tr>
<tr>
<td>Rimozione dei residui di agrofarmaci concentrati</td>
<td>30</td>
</tr>
<tr>
<td>Omogeneità della miscela fitoiatrica</td>
<td>10</td>
</tr>
<tr>
<td>Pulizia dei filtri</td>
<td>10</td>
</tr>
<tr>
<td>Volume residuo nelle tubazioni</td>
<td>10</td>
</tr>
</tbody>
</table>

Tecnologie

<table>
<thead>
<tr>
<th>Tecnologia</th>
<th>Peso (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbatoio lava impianto</td>
<td>40</td>
</tr>
<tr>
<td>Sistema di lavaggio interno</td>
<td>40</td>
</tr>
<tr>
<td>Serbatoio principale</td>
<td>10</td>
</tr>
<tr>
<td>Ugello/i lava serbatoio</td>
<td>10</td>
</tr>
</tbody>
</table>

Soluzioni tecniche

<table>
<thead>
<tr>
<th>Soluzione tecnica</th>
<th>Voto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serbatoio lava impianto con capacità standard (secondo norma ISO 16119-2)</td>
<td>8</td>
</tr>
</tbody>
</table>

Contributo al punteggio EOS

\[
\text{Contributo al punteggio EOS} = 8 \times 0.4 \times 0.45 \times 0.45 = 0.648
\]

Fig. 172 - Esempio di calcolo del contributo al punteggio EOS determinato dalla scelta di una specifica soluzione tecnica relativa al serbatoio lava impianto di una barra irratrici.

Come è possibile notare dall’analisi della tabella 8, l’area di rischio che ha maggiore “impatto” è quella relativa alla **contaminazione (interna + esterna) dell’irratrici**, che indipendentemente si tratti di macchina per colture erbacee o arboree, ha un peso complessivo pari al 55%. In particolare, per le barre irratrici ha una maggiore influenza il fattore contaminazione interna (peso = 45%) a causa della presenza di volumi di miscela residua nelle tubazioni a fine trattamento che possono raggiungere anche valori dell’ordine dei 20 litri e più. E’ stato dimostrato che macchie certificate ENAMA/ENTAM, e quindi in possesso di adeguati componenti tecnici in grado di minimizzare tale residuo, i valori posso arrivare a dimezzarsi. Nel caso degli atomizzatori, invece la contaminazione interna ha un peso inferiore (35%) a scapito di quella esterna (20%) a causa del maggiore deposito di miscela sulla superficie esterna della macchina durante la fase di irrorazione (fino allo 0.83% del distribuito -. Balsari et al. 2006). E’ stato però dimostrato (Debaer et al., 2008) che lavare direttamente in campo la macchina irratrici quando il residuo è ancora “umido” consente di rimuoverlo più facilmente minimizzando nel contempo il rischio di inquinamento puntiforme.

Un’altra area di rischio significativa (20%) è la fase di **riempimento della macchina irratrici** poiché durante il suo svolgimento si posso avere:

1. indesiderati fenomeni di sversamento di prodotto;
2. introduzione nel serbatoio di una quantitativo di acqua eccessivo rispetto al necessario (a causa di scala di lettura della quantità di liquido non precisa o non leggibile) con conseguente “creazione” di un eccessivo quantitativo di miscela residua a fine trattamento.
Il rischio indicato al punto 1) può essere minimizzato ad esempio adottando il serbatoio premiscelatore, mentre nel caso 2) è possibile intervenire utilizzando sensori di livello elettronici o contalitri di cui sia garantita la precisione.

Il software prevede complessivamente l’analisi di circa 80 elementi e consente di ottenere sia il punteggio complessivo (valore EOS) riferito a tutte le cinque aree di rischio esaminate, sia i cinque punteggi riferiti alle singole aree di rischio. In questo modo l’utente può verificare rispetto a quali aspetti (es. contaminazione interna dell’irroratrice, oppure fase di riempimento della stessa, ecc.) la sua attrezzatura presenta le carenze ambientali più gravi (Fig. 173). Per ciascuna area di rischio (il cui peso specifico è indicato tra parentesi) viene indicato il punteggio ottenuto (in %). Nell’ultima riga, evidenziata in verde, è rappresentato il punteggio complessivo. Al fine di evidenziare graficamente il livello dei punteggi ottenuti, a ciascun valore è stato associato un numero di stelle da 0 a 5 (es, nessuna stella per punteggi da 0 a 20, una stella da 20 a 40, ecc.).

COME FUNZIONA EOS

Di seguito si riporta schematicamente un esempio di funzionamento del software per un atomizzatore.
COME FUNZIONA EOS

ESEMPIO DI APPLICAZIONE DI EOS AD UN ATOMIZZATORE IN USO

Valore iniziale indice EOS ambientale

![Trattore con indice EOS](image1)

Indice EOS 23%

Accessori aggiunti:
Serbatoio lava impianto (capacità standard) e valvola a 3 vie

![Accessori aggiunti](image2)

Passo 1

Indice EOS 27%

![Passo 1](image3)
COME FUNZIONA EOS

ESEMPIO DI APPLICAZIONE DI EOS AD UN ATOMIZZATORE IN USO

Accessori aggiunti:
Ugelli lava serbatoio e valvola by-pass

Passo 2

Indice EOS 31%

ESEMPIO DI APPLICAZIONE DI EOS AD UN ATOMIZZATORE IN USO

Accessori aggiunti: lancia per il lavaggio esterno

Passo 3

Indice EOS 40%
COME FUNZIONA EOS

ESEMPIO DI APPLICAZIONE DI EOS AD UN ATOMIZZATORE IN USO

Accessori aggiunti: pre-miscelatore indipendente con ugello lava barattoli

Passo 4

Indice EOS 50%

Accessori aggiunti: schermature per chiusura flusso aria su un lato della macchina, dispositivi antigoccia e portaugelli multipli

Passo 5

Indice EOS 52%
APPLICAZIONE DI EOS ALLA REALTÀ ITALIANA

Per nessuna delle 15 macchine esaminate e per ciascuna area di rischio esaminata dal modello EOS è stato raggiunto il valore di 50. Si ricorda che una macchina completamente “rispettosa” dell’ambiente dovrebbe raggiungere un valore EOS pari a 100 (Tab. 13).

<table>
<thead>
<tr>
<th>IRRORATRICE</th>
<th>VALUTAZIONE EOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>contaminazione interna</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Aeroconvezione (con torretta)</td>
<td>no</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Aeroconvezione semovente</td>
<td>si</td>
</tr>
<tr>
<td>Pneumatica</td>
<td>no</td>
</tr>
<tr>
<td>Aeroconvezione semovente</td>
<td>si</td>
</tr>
</tbody>
</table>

Tab. 13 - Sintesi dei risultati dell’indagine EOS condotta nell’ambito di progetto Magis.

In particolare, le maggiori carenze sotto l’aspetto della protezione ambientale, e di conseguenza i punteggi complessivi inferiori, sono state riscontrate nelle fasi relative alla
contaminazione esterna (ad esempio non sono mai stati trovati sulle macchine irroratrici oggetto dell’indagine componenti atti a consentire la completa pulizia esterna della irrotatrice in campo) e, soprattutto, al riempimento dell’irrotatrice (es. mancanza di sistemi di controllo del livello di liquido nel serbatoio e/o di misura della quantità di acqua immessa, mancanza di alloggiamenti per il trasporto sicuro dei prodotti fitosanitari, ecc.. Fig. 174).
Considerando le 5 fasi separatamente, 2 macchine (13%) hanno ottenuto un risultato maggiore di 50 per la “contaminazione esterna”, 5 (33%) per le perdite e altre 2 (13%) per i residui (Fig. 175).

Fig. 174 - Valori medi di compatibilità ambientale riscontrati sulle macchine irroratrici oggetto dell’indagine per le diverse fasi considerate dal modello EOS (100 = massima compatibilità ambientale).

Fig. 175 - Percentuale di macchine irroratrici oggetto dell’indagine che hanno ottenuto almeno un risultato superiore a 50 nelle varie fasi considerate dal modello EOS.
IL FUTURO DI EOS

Con l’aiuto di questo strumento si auspica di creare consapevolezza fra gli operatori del settore (autorità, costruttori di macchine irroratrici, tecnici divulgatori, agricoltori) circa l’importanza che una macchina irroratrice “ottimizzata”, ossia dotata di tutti quei dispositivi tecnici più avanzati sotto il profilo della salvaguardia dell’ambiente, riveste ai fini della mitigazione del rischio ambientale legato all’impiego degli agrofarmaci. In particolare, grazie al software EOS si intende stimolare gli utilizzatori delle macchine irroratrici a prendere coscienza dei limiti delle proprie attrezzature in tema di prevenzione dell’inquinamento ambientale e quindi ad adottare gli opportuni provvedimenti per dotare le macchine degli accessori e dei dispositivi utili a prevenire la contaminazione dell’ambiente da agrofarmaci. Di conseguenza si intende anche stimolare, nelle case produttrici di irroratrici, lo sviluppo e l’adozione di nuove soluzioni tecniche, in grado di migliorare ulteriormente la compatibilità ambientale delle macchine irroratrici.

Il software è disponibile in Internet gratuitamente (www.prototype.topps-eos.org), in 9 diverse lingue dell’Unione Europea (inglese, francese, tedesco, italiano, spagnolo, danese, polacco, olandese e svedese). L’utente ha la possibilità di salvare passo passo i dati inseriti in maniera tale da poter completare il questionario anche in fasi temporali successive e può inviare alla propria casella di posta i risultati ottenuti.

EOS sarà soggetto ad un aggiornamento periodico inserendo le nuove soluzioni tecniche resesi nel frattempo disponibili sul mercato e, parallelamente, aggiornando i relativi punteggi.

Si prevede, infine, di proporre EOS come strumento ad integrazione della certificazione ENAMA/ENTAM (European Network for Testing of Agricultural Machines, www.entam.net) delle macchine irroratrici nuove di fabbrica. I punteggi ottenuti dai diversi modelli potranno essere utilizzati come elemento di scelta da parte del potenziale acquirente, ma anche essere impiegati, da parte delle autorità competenti, come criterio per assegnare eventuali incentivi per l’acquisto e/o l’utilizzo di attrezzature per la distribuzione dei prodotti fitosanitari il più possibile rispettose dell’ambiente.
GLOSSARIO

A

ADR

Angolo di apertura:
Si intende l’angolo formato dalle estremità del getto in prossimità dell’orifizio dell’ugello (ISO 5681, Fig. 176). Si esprime in gradi.

![Fig. 176 – Esempi di angolo di apertura del getto erogato](image)

Area sensibile:
Area situata in prossimità del campo trattato, la cui eventuale contaminazione con agrofarmaci potrebbe rappresentare un rischio per l’ambiente e per l’uomo. Ad esempio corpi idrici, in particolare quelli utilizzati per l’estrazione di acqua potabile, parchi naturali, aree gioco per i bambini, abitazioni, scuole, ospedali, ecc.

Nel dettaglio:
1. aree molto sensibili: pozzi non coperti e fontane; falde acquifere situate al di sotto di suoli molto permeabili; aree limitrofe a pozzi o sorgenti da dove viene prelevata acqua potabile; corpi idrici superficiali soggetti alla contaminazione da ruscellamento (es. situati al fondo di aree coltivate declivi).
2. aree mediamente sensibili: pozzi protetti naturalmente, fontane e sorgenti, stagni (es. situati in aree forestali); falde acquifere situate al di sotto di suoli semi-permeabili; aree circostanti pozzi e fontane; corpi idrici superficiali (esclusi quelli presenti all’interno dell’azienda agricola ed isolati dalla rete idrica superficiale).
3. aree poco sensibili: pozzi coperti, fontane protette (es. racchiuse in strutture di cemento), falde acquifere situate al di sotto di terreni impermeabili; tutte le aree non direttamente collegate a quelle mediamente o molto sensibili all’inquinamento
Atomizzatore:
vedi “Irroratrice per colture arboree”.

B
Banco prova verticale:
dispositivo in grado di raccogliere il liquido erogato dalle irrasrate per colture arboree lungo il piano verticale in maniera tale da poterne valutare il profilo di distribuzione verticale (Fig. 177).

Barra irroratrice:
macchina irroratrice equipaggiata con una barra orizzontale dotata di ugelli adatti a distribuire gli agrofarmaci sulle colture erbacee (es. grano, orzo, mais, patate, pomodori, ecc.); le gocce sono erogate verso il basso da un piano orizzontale.

Barra irroratrice con manica d’aria:
irroratrice a barra per le colture erbacee equipaggiata con ugelli idraulici e con un ventilatore il cui flusso d’aria è convogliato lungo la barra attraverso un’apposita manica gonfiabile (Fig. 178). L’aria in uscita dalla manica viene indirizzata verso il basso dove si trova la coltura ed ha la funzione sia di convogliare le gocce erogate dagli ugelli verso il bersaglio che di ridurre l’entità della scia di gocce che rimangono sospese nell’atmosfera dietro la barra.

Buffer zone:
vedi zona di rispetto
C

Cartine idrosensibili:
strisce di carta speciale che reagisce e cambia colore al contatto con l’acqua. Si utilizzano tipicamente come indicatori della copertura del bersaglio (Fig. 179).

Fig. 179 – Visualizzazione della copertura del bersaglio per mezzo di cartine idrosensibili.

CE – marchio
Il marchio di Conformità Europea (CE), nel caso delle macchine irroratrici e a seguito della Direttiva 2009/127 CE, si riferisce alla sicurezza del prodotto sia nei confronti dell’utilizzatore che dell’ambiente. Indica che il prodotto marchiato con questa etichetta rispetta i requisiti essenziali di sicurezza e salvaguardia della salute dell’operatore e dell’ambiente, previsti a livello europeo; tuttavia non si riferisce a norme inerenti la qualità del prodotto. Per ottenere il marchio CE un prodotto deve essere sottoposto ad un processo di autocertificazione oppure a valutazioni della sua sicurezza effettuate da enti terzi noti come “Enti Notificatori” o “Enti Competenti”. In assenza di marchiatura CE un prodotto può non essere ammesso sul mercato europeo.

CEN
Comité Européen de Normalisation – Comitato Europeo di Normazione. Si occupa della produzione di Norme Europee (EN). Vedi anche alla voce “Norma”.
Classe di riduzione della deriva:
secondo la Norma ISO 22369-1 le macchine irroratrici possono essere classificate in
funzione del rischio di generare deriva confrontando la deriva generata dalla macchina
candidata con quella generata da un’attrezzatura di riferimento. Le classi di riduzione della
deriva sono le seguenti:

<table>
<thead>
<tr>
<th>Classe</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>% di riduzione della deriva</td>
<td>>99</td>
<td>95-99</td>
<td>90-95</td>
<td>75-90</td>
<td>50-75</td>
<td>25-50</td>
</tr>
</tbody>
</table>

In numerosi Paesi dell’UE alcuni ugelli ed alcune macchine irroratrici sono classificate
ufficialmente come “in grado di ridurre la deriva” secondo le classi definite dalla Norma
ISO 22369-1.

Coadiuvante:
sostanza priva di attività biologica primaria ma in grado di migliorare l’efficacia biologica
delle sostanze attive presenti negli agrofarmaci. In questo contesto può trattarsi, ad
esempio, di una sostanza che incrementa la viscosità della miscela fitoioaticina e che
pertanto riduce la deriva.

Compensazione della pressione:
sistema di valvole presenti nel circuito idraulico dell’irroratrice che permette di mantenere
costante la pressione di esercizio indipendentemente dal numero di sezioni di barra attive.
La regolazione delle valvole per la compensazione della pressione (ritorni calibrati) deve
essere effettuata opportunamente in funzione della dimensione degli ugelli impiegati
sull’irroratrice.

Configurazione dell’irroratrice:
combizazione dei parametri operativi dell’irroratrice utilizzati per un trattamento. Per
esempio, per le barre irroratrici per le colture erbacee si intende la combinazione della
tipologia e della dimensione degli ugelli, della pressione di esercizio, dell’altezza di lavoro
della barra e della velocità di avanzamento. Per le irroratrici per le colture arboree si
intende la combinazione della tipologia e dimensione degli ugelli, del numero di ugelli
attivi, del loro orientamento, della pressione di esercizio, della velocità di avanzamento,
della portata del ventilatore e dell’orientamento del flusso d’aria.

Controllo funzionale
si intende una verifica della funzionalità dell’irroratrice eseguita da un Ente terzo; essa può
essere obbligatoria oppure effettuata su base volontaria, ufficiale o non ufficiale, ma
adeguatamente registrata e documentata. Il controllo funzionale delle irroratrici viene
solitamente eseguito sulla base di quanto previsto nella Norma EN 13790 (sarà nel corso
del 2015 sostituita dalla nuova Norma armonizzata EN ISO 16122). In Italia l’Enama ha
prodotto una serie di documenti circa le modalità secondo le quali effettuare tale controllo funzionale (http://www.enama.it/it/irroratrici.php).

Copertura del bersaglio:
porzione della superficie del bersaglio coperta dalle gocce erogate dall’irroratrice espressa in % sulla superficie complessiva del bersaglio (ISO 5681).

Corpo idrico:
qualunque corpo idrico superficiale (sia con acqua corrente che stagnante) esposto alla contaminazione da deriva (es. laghi, stagni, bacini, fiumi, torrenti, canali, fontanili, ecc.) ad esclusione delle scoline, degli adduttori d’acqua per l’irrigazione e dei pensili (corpi idrici che scorrono almeno 1 m sopra la coltura trattata):

Corso d’acqua:
corpo idrico caratterizzato dalla presenza di acqua corrente (es. fiumi, torrenti, canali, ecc.)

Crop tilter:
barra rigida equipaggiata con parallelogrammi articolati, montata al di sotto della barra irroratrice, che permette di aprire la vegetazione al passaggio della barra irroratrice sulla coltura (vedi capitolo “Ulteriori indicazioni per ridurre la deriva generata dalle barre irroratrici ”, Fig. 158).

Deflettore dell’aria:
sottile lamina metallica o in plastica regolabile, posizionata in prossimità della sezione di uscita dell’aria del ventilatore, la cui regolazione consente di modificare la direzione del flusso d’aria (Fig. 180). Elemento montato tipicamente sulle macchine irroratrici per le colture arboree. In funzione della tipologia di convogliatore dell’aria possono essere presenti uno o più deflettori su ciascun lato della macchina.

Deriva:
là quantità di miscela erogata dall’irroratrice nel corso del trattamento che, per azione delle correnti d’aria ambientali, viene allontanata dall’area oggetto della distribuzione (ISO 22866).

Diffusore a polverizzazione pneumatica:
nelle irroratrici pneumatiche, le gocce vengono generate dall’impatto di una corrente d’aria ad alta velocità (oltre 100 m/s) sulla vena liquida che viene convogliata a bassa pressione (1-2 bar) in prossimità del/i diffusore/i. Tanto maggiore è la velocità dell’aria, tanto più fini risultano essere le gocce erogate.
D10, D50, D90:
vedi dimensione delle gocce

Diametro mediano volumetrico:
vedi dimensione delle gocce

Dimensione delle gocce:
parametro utilizzato per caratterizzare la qualità dello spray. Sono utilizzati tipicamente i seguenti parametri: 1) Diametro Mediano Volumetrico (VMD), che è il diametro (espresso in µm) che divide una popolazione di gocce in due parti di pari volume e corrisponde al D50; 2) D10, che è il diametro (in µm) al di sotto del quale si trova il 10% del volume complessivo della popolazione di gocce; 3) D90, che è il diametro (in µm) al di sotto del quale si trova il 90% del volume complessivo della popolazione di gocce. Maggiore è il VMD, tanto più grandi sono le gocce. Sei categorie di dimensione delle gocce sono state definite dal British Crop Protection Council (BCPC); esse sono riconosciute a livello internazionale: a) gocce molto fini (VMD < 150µm), b) fini (VMD 150÷250 µm), c) medie (VMD 250÷350 µm), d) grandi (VMD 350÷450 µm), e) molto grandi (VMD 450÷550 µm), f) estremamente grandi (VMD >550 µm)

Direttiva Europea (Direttiva UE):

Dispositivi per ridurre la deriva:
componenti dell’irroratrice, coadiuvanti per le miscele fitosanitarie, dispositivi in grado di prevenire la generazione della deriva grazie all’incremento della dimensione media delle gocce (es. ugelli ad iniezione d’aria, coadiuvanti antideriva, ecc.) oppure in grado di limitare la dispersione della miscela fitoiotrica al di fuori dell’area trattata (es. maniche d’aria, schermature, sistemi a tunnel, ecc.). Sono comunemente indicati con l’acronimo inglese SDRT (Spray Drift Reducing Techniques). Consultare il sito internet www.sdrt.info per avere una panoramica dei dispositivi riconosciuti come antideriva nei diversi Paesi dell’Unione Europea.
Distribuzione delle gocce:
ripartizione delle gocce erogate sulla superficie del bersaglio; può essere visualizzata con l’ausilio di cartine idrosensibili (vedi definizione).

Distribuzione trasversale:
diagramma di distribuzione ottenuto da una barra irroratrice, che può essere misurato impiegando appositi banchi prova che raccolgono il liquido erogato al di sotto della barra (Fig. 181).

![Fig. 181 - Attrezzatura utilizzata per misurare la qualità della distribuzione trasversale.](image)

EN:
Vedi CEN

Etichetta dell’agrofarmaco:
informazioni ed indicazioni tecniche circa la composizione chimica, le dosi di impiego, le istruzioni d’uso e le precauzioni da adottare che devono essere riportate sulle etichette adesive dei contenitori dei prodotti fitosanitari. Solitamente, queste informazioni riassumono le informazioni tecniche più dettagliate che sono contenute nella scheda di sicurezza del prodotto. Quest’ultima deve sempre essere consegnata dal rivenditore insieme con le confezioni degli agrofarmaci.

F:
Frazioni di miscela diluita
soluzioni contenenti una concentrazione ignota di agrofarmaci; ad esempio, quelle che derivano dalla raccolta in azienda del liquido di lavaggio delle macchine irroratrici.
Forma di allevamento:
nelle colture arboree, la modalità con la quale vengono sistemati e potati i tralci/rami lungo i filari. Esempi di forme di allevamento del vigneto sono: Alberello, Cordone speronato, Guyot, Sylvoz, Tendone, T-trellis, V-trellis. Esempi di forme di allevamento dei frutteti sono: Palmetta, Spindelbusch, Vaso, Y.

G
Goccia:
particella liquida sostanzialmente sferica con diametro generalmente minore di 1000 µm (ISO 5681).

I
Inquinamento diffuso:
nel contesto di TOPPS-Prowadis, questo fenomeno è principalmente legato all’indesiderato movimento degli agrofarmaci nel suolo, nell’acqua o nell’aria a seguito dei trattamenti effettuati sulle colture agricole e nelle aree dove è possibile applicare tali prodotti secondo quanto riportato in etichetta. Esempi di inquinamento diffuso comprendono l’infiltrazione, il ruscellamento, l’erosione del suolo e la deriva del prodotto fitosanitario a seguito dei trattamenti fitosanitari autorizzati.

Inquinamento puntiforme
nell’ambito di TOPPS si intendono i gocciolamenti ed i versamenti accidentali di prodotto fitosanitario (concentrato o diluito) durante le fasi di trasporto, stoccaggio, preparazione della miscela e riempimento dell’irrotatrice, distribuzione della miscela, pulizia e manutenzione dell’attrezzatura e smaltimento dei prodotti reflui del trattamento. Si intende inoltre la distribuzione di quantitativi eccessivi di agrofarmaco per unità di superficie nel corso del trattamento (sovradosaggi).

Irroratrice a cannone:
tipologia di irroratrice utilizzata tipicamente per piante d’alto fusto (es. pioppi), ma talvolta anche per applicazioni su colture di mais pienamente sviluppate, equipaggiata con un ventilatore centrifugo e con un convogliatore dell’aria ad uscita singola; gli ugelli a polverizzazione idraulica sono posizionati lungo il perimetro dell’uscita del convogliatore dell’aria così che le gocce erogate vengono proiettate ad alta velocità a notevole distanza (qualche decina di metri) dalla macchina. Questo tipo di irroratrice genera nuvole di gocce non controllabili, molto sensibili alla deriva (Fig. 182).
Irroratrice a tunnel:
Irroratrice progettata principalmente per colture arboree dotata di una struttura scavallante ed equipaggiata con pannelli in grado di contenere la dispersione delle gocce al difuori del filare trattato. I pannelli possono essere dotati di sistemi per il recupero ed il riutilizzo del liquido raccolto.

Irroratrice a tunnel con recupero:
Irroratrice scavallante semplice o multifila (vedi definizioni) tipicamente impiegata in vigneto, equipaggiata con schermi o sistemi a tunnel per prevenire la dispersione delle gocce erogate al di fuori dei filari trattati e in grado di recuperare il liquido che oltrepassa il filare trattato al fine di riutilizzarlo nelle fasi successive dell’applicazione.

Irroratrice per applicazioni localizzate:
Macchina irroratrice che eroga il liquido in fasce o su file (ISO 5681). Tipicamente utilizzata in colture a file o per distribuire erbicidi nel sottofilare di vigneti e frutteti.

Irroratrice per colture arboree:
Macchina irroratrice generalmente caratterizzata dalla presenza di un ventilatore e da semibarre semicircolari o verticali, presenti su entrambi i lati della macchina, dotate di ugelli adatti a distribuire gli agrofarmaci sulle colture arboree ed arbustive (es. frutteti di melo/pero/pesco, agrumeti, oliveti, vigneti, ecc.): le gocce sono indirizzate verso la chioma della vegetazione lungo un piano verticale.

Irroratrice scavallante semplice:
Irroratrice per colture arboree dotata di una struttura che passa al di sopra dei filari e di elementi verticali che supportano gli ugelli e i diffusori dell’aria in modo tale che entrambi i lati del filare vengono trattati contemporaneamente.
Irroratrice scavallante multifila:
nella categoria delle irroratrici per le colture arboree, si tratta di una macchina in grado di
trattare quattro o più file in un singolo passaggio (Fig. 184).

Fig. 184 - Irroratrice scavallante: A) con ugelli a polverizzazione idraulica; B) con diffusori pneumatici.

Irroratrice schermata:
Irroratrice dotata di schermi con la funzione di contenere la dispersione delle gocce intorno agli ugelli/diffusori. Tali schermi possono essere montati sulle barre irroratrici per
colture erbacee (Fig. 185 A), sulle irroratrici per il diserbo localizzato dei sottofila in
vigneto e frutteto (Fig. 185 B), oppure sulle irroratrici scavallanti per le colture arboree
(Fig. 185 C).

Fig. 185 - Esempi di irroratrici schermate

ISO:
International Organisation for Standardisation – Organizzazione Internazionale per la
Standardizzazione. Si occupa della redazione di Norme Internazionali (vedi anche la voce
“Norma”).

M
Misure di mitigazione:
azioni mirate a prevenire la contaminazione ambientale dovuta alla deriva degli
agrofarmaci. Per esempio, l’utilizzo di dispositivi e settaggi dell’irroratrice che consentono
di ridurre all’origine la produzione di deriva (misure dirette); l’adozione di fasce di rispetto, l’installazione di barriere frangivento naturali o artificiali, l’impiego di reti antigrandine anche in funzione antideriva (misure indirette).

N

Norma:

O

Orientare gli ugelli:
indirizzare i getti erogati dagli ugelli verso una direzione definita (es. nelle barre irroratrici orientare gli ugelli indietro o in avanti rispetto all’asse della barra, per esempio in combinazione con il flusso della manica d’aria, in funzione della direzione del vento).

P

Penetrazione delle gocce:
il movimento delle gocce nelle parti interne della chioma del bersaglio ed il loro deposito sulle foglie interne della vegetazione (ISO 5681).

Portata dell’aria:
volume d’aria erogato per unità di tempo (ISO 5681), tipicamente espresso in m3/h o cm3/s. Dipende principalmente dalla dimensione del ventilatore, dalla sua velocità di rotazione e dall’angolazione delle pale della ventola: tanto maggiore è il diametro del ventilatore, l’inclinazione delle pale e/o la velocità di rotazione, tanto più elevata risulta la portata dell’aria.

Prodotti reflui del trattamento:
tutti i residui contenenti agrofarmaci. Comprendono i contenitori vuoti, i prodotti non più utilizzabili, le frazioni di miscela fitoiatrica avanzate ed i residui di miscela presenti nell’irroratrice al termine del trattamento. Comprendono inoltre il materiale solido
contaminato con i prodotti fitosanitari (es. matrici dei biofiltri, materiale assorbente impiegato per tamponare perdite accidentali, ecc.).

R
Rete antigrandine:
rete generalmente in nylon che, specialmente in Europa meridionale, viene sistemata al di sopra di frutteti e vigneti principalmente allo scopo di proteggere i frutti e i grappoli dalla grandine. La sua presenza quando si effettuano i trattamenti fitosanitari può fungere da barriera alla dispersione delle gocce erogate al di fuori del campo trattato, quindi può essere impiegata anche come tecnica per mitigare la deriva.

S
Sesto d’impianto:
nelle colture arboree, la disposizione delle piante nello spazio (ad esempio in un frutteto il sesto d’impianto di 4.5 x 1.5 m indica una distanza tra i filari pari a 4.5 m ed una distanza tra due piante sul filare pari a 1.5 m).

Spettro di gocce:
distribuzione delle dimensioni delle gocce all’interno di una popolazione di gocce

T
Taratura dell’irratoratrice:
misura e regolazione della portata e del profilo di distribuzione dell’irratoratrice adottando i parametri operativi opportuni (es. dimensione degli ugelli, pressione di esercizio, velocità di avanzamento, portata del ventilatore, ecc.) al fine di seguire le prescrizioni delle buone pratiche agricole. Tale operazione dovrebbe essere effettuata dopo aver controllato il corretto funzionamento della macchina irratoratrice (es. portata degli ugelli, assenza di gocciolamenti, funzionalità dei dispositivi antigoccia, ecc.)

Tipologie di irratoriatrici:
categorie di macchine irratoriatrici. Si possono definire delle categorie generali di macchine irratoriatrici in funzione del meccanismo di polverizzazione del liquido (irratoriatrici a polverizzazione idraulica, pneumatica, centrifuga) oppure in funzione del tipo di bersaglio per il quale sono progettate (barre irratoriatrici per colture erbacee, irratoriatrici per colture arboree). Nell’ambito di ciascuna di queste categorie si possono definire delle subcategorie.
Ad esempio, per le barre irratoriatrici per le colture erbacee:
a) Barre irratoriatrici con manica d’aria;
b) Barre irratoriatrici convenzionali a polverizzazione idraulica
c) Barre irratoriatrici a polverizzazione pneumatica
d) Barre irroratrici a polverizzazione centrifuga
Tra le irroratrici per colture arboree (Fig. 186):

a) Irroratrici ad aeroconvezione convenzionali con ventilatore assiale
b) Irroratrici ad aeroconvezione a torretta
c) Irroratrici ad aeroconvezione con diffusori multipli orientabili
d) Irroratrici scavallanti semplici
e) Irroratrici scavallanti multifila
f) Irroratrici a tunnel
g) Irroratrici a cannone
h) Irroratrici pneumatiche
(vedi anche definizioni specifiche)

Fig. 186 - Esempi di tipologie di irroratrici impiegate in vigneto ed in frutteto.

U

Ugello:
componente dell’irroratrice che produce il getto di gocce indirizzato verso il bersaglio. In funzione del meccanismo di generazione delle gocce, si possono distinguere tre categorie principali di ugelli: a) ugelli a polverizzazione idraulica; b) diffusori a polverizzazione pneumatica; c) ugelli rotativi (vedi definizioni specifiche).

Ugello a cono pieno:
ugello a polverizzazione idraulica (Fig. 187) caratterizzato da un orifizio circolare; genera un getto di forma conica che determina l’impronta di un cerchio pieno.

Fig. 187 – Ugello a cono pieno
Ugello a fessura:
ugello a polverizzazione per pressione (Fig. 188) caratterizzato da un orifizio di forma ellittica che produce un getto piatto triangolare; detto anche ugello “a ventaglio”, è tipicamente utilizzato sulle barre irroratrici per colture erbacee ma può essere impiegato anche sugli atomizzatori per colture arboree. Per la maggior parte delle applicazioni l’angolo di apertura del getto varia tra 80° e 120°; angoli di apertura minori possono essere impiegati per distribuzioni localizzate (es. trattamenti sulle file, diserbo del sottofila, ecc.).

Ugello a iniezione d’aria:
ugello a polverizzazione per pressione (vedi definizione) dotato di piccoli orifizi lungo il corpo dell’ugello stesso che permettono l’aspirazione dell’aria nel flusso di liquido; la miscela di aria e liquido consente la produzione di goccioline che contengono al loro interno microscopiche bolle d’aria. Le gocce erogate, pertanto, risultano più grandi rispetto a quelle erogate dagli ugelli convenzionali. Sono oggi disponibili sul mercato ugelli ad iniezione d’aria sia a fessura che a turbolenza.

Ugello a polverizzazione per pressione (idraulica):
componente di un’irroratrice dotato di un orifizio attraverso il quale il liquido in pressione viene fatto fuoriuscire al fine di generare uno spray (ISO 5681). Tanto maggiore è la pressione e tanto più piccolo l’orifizio dell’ugello, tanto più fini risultano essere le gocce prodotte. Esistono diverse categorie di ugelli a polverizzazione idraulica: a fessura, a turbolenza (entrambe sia di tipo convenzionale che ad iniezione d’aria), a specchio, a cono pieno (vedi rispettive definizioni).

Ugello a specchio:
ugello a polverizzazione idraulica (vedi definizione) nel quale le gocce sono generate da un piccolo deflettore posto all’interno del corpo dell’ugello e rimbalzano verso il terreno. Questi ugelli generano gocce grandi che hanno scarsa energia cinetica e sono impiegati tipicamente per le applicazioni su terreno nudo (Fig. 189).

Ugello a turbolenza:
ugello a polverizzazione per pressione (Fig. 190) caratterizzato da un orifizio circolare ed equipaggiato con un vorticatore in cui il liquido ruota prima di essere erogato attraverso l’orifizio di uscita. Detto anche “ugello a cono” produce un getto a forma di cono vuoto la cui impronta risulta essere un cerchio vuoto al suo interno. L’angolo di apertura del getto è tipicamente 80° e questo
tipo di ugello è utilizzato principalmente sulle irroratrici per le colture arboree, talvolta anche sulle barre irroratrici per le colture erbacee.

Ugello rotativo:
componente dell’irroratrice che consiste in un disco rotante il cui perimetro è dentellato. Il disco ruota velocemente grazie ad un motorino elettrico mentre il liquido viene convogliato a bassa pressione (1-2 bar) verso il centro del disco stesso. La forza centrifuga indirizza il liquido lungo il perimetro del disco dove i dentelli provvedono alla sua frantumazione ed alla generazione delle gocce. In questo caso la dimensione delle gocce è omogenea ed è determinata dalla velocità di rotazione del disco: maggiore è la velocità di rotazione, più fini risultano essere le gocce prodotte Questo tipo di ugello può essere montato sia su barre irroratrici che su atomizzatori e consente di applicare volumi di distribuzione molto contenuti (Fig. 191 e Fig. 192).

![Fig. 191 - Esempio di ugello rotativo per atomizzatori](image1)

Ugello tipo “twin fluid”:
componente dell’irroratrice nel quale le gocce vengono generate dall’azione di una corrente d’aria ad alta velocità, che viene prodotta da un compressore, sulla miscela da irrorare (ISO 5681).

![Fig. 192 - Esempio di ugello rotativo per barre irroratrici.](image2)
Volume di distribuzione:
volume di miscela fitosanitaria applicato per unità di superficie (ISO 5681). Viene generalmente espresso in l/ha.

Volume residuo non diluibile:
porzione del volume residuo totale nell’irroratrice che non può ritornare nel serbatoio principale durante il normale funzionamento dell’irroratrice (ISO 13440). Detto anche “volume morto”; tipicamente, si tratta del volume presente nelle tubazioni in mandata, a valle del regolatore di pressione.

Volume residuo diluibile:
vedi volume residuo nel serbatoio.

Volume residuo nel serbatoio:
porzione del volume residuo totale che rimane nel serbatoio dell’irroratrice o che può ritornarvi durante il normale funzionamento della macchina (ISO 13440).

Volume residuo totale:
“volume di miscela residuo nell’irroratrice che non può essere distribuito alla pressione di esercizio desiderata e/o applicando il volume di distribuzione desiderato; tale volume è pari alla somma del residuo nel serbatoio (volume diluibile) e del volume morto (non diluibile)” (ISO 13440)

Zona di rispetto:
fascia di larghezza definita in etichetta del prodotto fitosanitario disposta lungo il confine dell’appezzamento, preferibilmente non coltivata, che non viene mai irrorata direttamente ed ha la funzione di prevenire la contaminazione da agrofarmaci delle aree sensibili adiacenti al campo trattato (Fig. 193).
Fig. 193 - Fascia di rispetto per proteggere l’area sensibile dalla deriva.

Zona non trattata (no spray zone):
parte del campo coltivato che non deve essere trattata direttamente per prevenire i rischi di contaminazione dell’ambiente. Tipicamente, può corrispondere alla parte del campo prossima al suo margine sottovento.
BIBLIOGRAFIA

LEGISLAZIONE EUROPEA

2000/60/EC “Direttiva Acque”.

75/440/EEC (Direttiva del Consiglio d’Europa) del 16 Giugno 1975 inerente la qualità delle acque superficiali da utilizzare per l’estrazione di acqua potabile all’interno degli Stati Membri.

Documenti collegati: Requisiti approvati per i veicoli [AVR]/Requisiti approvati per i serbatoi [ATR]

91/414/EEC “Direttiva sull’immissione in commercio dei prodotti fitosanitari”

LEGISLAZIONE ITALIANA

D. Lgs. 3 aprile 2006, n. 152 "Norme in materia ambientale" pubblicato nella Gazzetta Ufficiale n. 88 del 14 aprile 2006 - Supplemento Ordinario n. 96

ART. 91 (aree sensibili)

1. Le aree sensibili sono individuate secondo i criteri dell'Allegato 6 alla parte terza del presente decreto. Sono comunque aree sensibili:

 a) i laghi di cui all'Allegato 6 alla parte terza del presente decreto, nonché i corsi d'acqua a esse afferenti per un tratto di 10 chilometri dalla linea di costa;

 b) le aree lagunari di Orbetello, Ravenna e Piallassa-Baiona, le Valli di Comacchio, i laghi salmastri e il delta del Po;

 c) le zone umide individuate ai sensi della convenzione di Ramsar del 2 febbraio 1971, resa esecutiva con decreto del Presidente della Repubblica 13 marzo 1976, n. 448;

 d) le aree costiere dell'Adriatico-Nord Occidentale dalla foce dell'Adige al confine meridionale del comune di Pesaro e i corsi d'acqua ad essi afferenti per un tratto di 10 chilometri dalla linea di costa;

 e) il lago di Garda e il lago d'Idro;

 f) i fiumi Sarca-Mincio, Oglio, Adda, Lambro-Olona meridionale e Ticino;
g) il fiume Amo a valle di Firenze e i relativi affluenti;

h) il golfo di Castellammare in Sicilia;

i) le acque costiere dell'Adriatico settentrionale.

2. Il Ministro dell'ambiente e della tutela del territorio, sentita la Conferenza Stato-Regioni, entro centottanta giorni dalla data di entrata in vigore della parte terza del presente decreto individua con proprio decreto ulteriori aree sensibili identificate secondo i criteri di cui all'Allegato 6 alla parte terza del presente decreto.

3. Resta fermo quanto disposto dalla legislazione vigente relativamente alla tutela di Venezia.

4. Le regioni, sulla base dei criteri di cui al comma 1 e sentita l'Autorità di bacino, entro un anno dalla data di entrata in vigore della parte terza del presente decreto, e successivamente ogni due anni, possono designare ulteriori aree sensibili ovvero individuare all'interno delle aree indicate nel comma 2 i corpi idrici che non costituiscono aree sensibili.

5. Le regioni, sulla base dei criteri di cui al comma 1 e sentita l'Autorità di bacino, delimitano i bacini drenanti nelle aree sensibili che contribuiscono all'inquinamento di tali aree.

6. Il Ministro dell'ambiente e della tutela del territorio provvede con proprio decreto, da emanare ogni quattro anni dalla data di entrata in vigore della parte terza del presente decreto, sentita la Conferenza Stato-Regioni, alla reidentificazione delle aree sensibili e dei rispettivi bacini drenanti che contribuiscono all'inquinamento delle aree sensibili.

7. Le nuove aree sensibili identificate ai sensi dei commi 2, 4, e 6 devono soddisfare i requisiti dell'articolo 106 entro sette anni dall'identificazione.

ART. 93 (zone vulnerabili da prodotti fitosanitari e zone vulnerabili alla desertificazione)

1. Con le modalità previste dall'articolo 92, e sulla base delle indicazioni contenute nell'Allegato 7/B alla parte terza del presente decreto, le regioni identificano le aree vulnerabili da prodotti fitosanitari secondo i criteri di cui all'articolo 5, comma 21, del decreto legislativo 17 marzo 1995, n. 194, allo scopo di proteggere le risorse idriche o altri comparti ambientali dall'inquinamento derivante dall'uso di prodotti fitosanitari.
2. Le regioni e le Autorità di bacino verificano la presenza nel territorio di competenza di aree soggette o minacciate da fenomeni di siccità, degrado del suolo e processi di desertificazione e le designano quali aree vulnerabili alla desertificazione.

ART. 94 (disciplina delle aree di salvaguardia delle acque superficiali e sotterranee destinate al consumo umano)

1. Su proposta delle Autorità d’ambito, le regioni, per mantenere e migliorare le caratteristiche qualitative delle acque superficiali e sotterranee destinate al consumo umano, erogate a terzi mediante impianto di acquedotto che riveste carattere di pubblico interesse, nonché per la tutela dello stato delle risorse, individuano le aree di salvaguardia distinte in zone di tutela assoluta e zone di rispetto, nonché, all’interno dei bacini imbriferi e delle aree di ricarica della falda, le zone di protezione.

2. Per gli approvvigionamenti diversi da quelli di cui al comma 1, le Autorità competenti impartiscono, caso per caso, le prescrizioni necessarie per la conservazione e la tutela della risorsa e per il controllo delle caratteristiche qualitative delle acque destinate al consumo umano.

3. La zona di tutela assoluta è costituita dall’area immediatamente circostante le captazioni o derivazioni: essa, in caso di acque sotterranee e, ove possibile, per le acque superficiali, deve avere un’estensione di almeno dieci metri di raggio dal punto di captazione, deve essere adeguatamente protetta e deve essere adibita esclusivamente a opere di captazione o presa e ad infrastrutture di servizio.

4. La zona di rispetto è costituita dalla porzione di territorio circostante la zona di tutela assoluta da sottoporre a vincoli e destinazioni d’uso tali da tutelare qualitativamente e quantitativamente la risorsa idrica captata e può essere suddivisa in zona di rispetto ristretta e zona di rispetto allargata, in relazione alla tipologia dell’opera di presa o captazione e alla situazione locale di vulnerabilità e rischio della risorsa. In particolare, nella zona di rispetto sono vietati l’insediamento dei seguenti centri di pericolo e lo svolgimento delle seguenti attività:

 a) dispersione di fanghi e acque reflue, anche se depurati;
b) accumulo di concimi chimici, fertilizzanti o agrofarmaci;

c) spandimento di concimi chimici, fertilizzanti o agrofarmaci, salvo che l'impiego di tali sostanze sia effettuato sulla base delle indicazioni di uno specifico piano di utilizzazione che tenga conto della natura dei suoli, delle colture compatibili, delle tecniche agronomiche impiegate e della vulnerabilità delle risorse idriche;

d) dispersione nel sottosuolo di acque meteoriche proveniente da piazze e strade;

e) aree cimiteriali;

f) apertura di cave che possono essere in connessione con la falda;

g) apertura di pozzi ad eccezione di quelli che estraggono acque destinate al consumo umano e di quelli finalizzati alla variazione dell’estrazione ed alla protezione delle caratteristiche quali-quantitative della risorsa idrica;

h) gestione di rifiuti;

i) stoccaggio di prodotti ovvero sostanze chimiche pericolose e sostanze radioattive;

j) centri di raccolta, demolizione e rottamazione di autoveicoli;

k) pozzi perdenti;

l) pascolo e stabulazione di bestiame che ecceda i 170 kg/ha di azoto presente negli effluenti, al netto delle perdite di stoccaggio e distribuzione. E' comunque vietata la stabulazione di bestiame nella zona di rispetto ristretta.

5. Per gli insediamenti o le attività di cui al comma 4, preesistenti, ove possibile, e comunque ad eccezione delle aree cimiteriali, sono adottate le misure per il loro allontanamento; in ogni caso deve essere garantita la loro messa in sicurezza. Entro centottanta giorni dalla data di entrata in vigore della parte terza del presente decreto le regioni e le province autonome disciplinano, all'interno delle zone di rispetto, le seguenti strutture o attività:

a) fognature;

b) edilizia residenziale e relative opere di urbanizzazione;

c) opere viarie, ferroviarie e in genere infrastrutture di servizio;
d) pratiche agronomiche e contenuti dei piani di utilizzazione di cui alla lettera c) del comma 4.

6. In assenza dell'individuazione da parte delle regioni o delle province autonome della zona di rispetto ai sensi del comma 1, la medesima ha un'estensione di 200 metri di raggio rispetto al punto di captazione o di derivazione.

7. Le zone di protezione devono essere delimitate secondo le indicazioni delle regioni o delle province autonome per assicurare la protezione del patrimonio idrico. In esse si possono adottare misure relative alla destinazione del territorio interessato, limitazioni e prescrizioni per gli insediamenti civili, produttivi, turistici, agro-forestali e zootecnici da inserirsi negli strumenti urbanistici comunali, provinciali, regionali, sia generali sia di settore.

8. Ai fini della protezione delle acque sotterranee, anche di quelle non ancora utilizzate per l'uso umano, le regioni e le province autonome individuano e disciplinano, all'interno delle zone di protezione, le seguenti aree:
 a) aree di ricarica della falda;
 b) emergenze naturali ed artificiali della falda;

NORME EN e ISO (LE PIÙ RILEVANTI).

EN 13790-1e 2: Macchine agricole - Irroratrici – Controllo di irroratrici usate. *Saranno nel corso del 2015 sostituite dalla nuova Norma armonizzata EN ISO 16122*

EN ISO 16119: Macchine agricole e forestali- Requisiti ambientali delle irroratrici – Parte 1: Generale, Parte 2 Barre irroratrici, Parte 3 Irroratrici aeroassistite per arbusti e coltivazioni arboree

EN ISO 4254-6rev: Macchine agricole e forestali- Irroratrici e macchine per la distribuzione di fertilizzanti liquidi - Sicurezza

ISO 19932: Macchine per la protezione delle colture – Irroratrici a spalla

ISO 22368-1: Macchine per la protezione delle colture – Metodologie di prova per la valutazione dei sistemi di pulizia – Parte 1: Pulizia interna dell’intera macchina irroratrice

ISO 22368-2: Macchine per la protezione delle colture - Metodologie di prova per la valutazione dei sistemi di pulizia – Parte 2: Pulizia esterna dell’irroratrice

ISO 22368-3: Macchina per la protezione delle colture - Metodologie di prova per la valutazione dei sistemi di pulizia – Parte 3: Pulizia interna del serbatoio dell’irroratrice

ISO 4254-6: Trattori e macchine per l’agricoltura e foreste – Dispositivi tecnici per garantire la sicurezza – parte 6: macchine per la protezione delle colture.

ISO 22866: Macchine per la protezione delle colture – Metodi di misura della deriva in campo

ISO 5682-2: Macchine per la protezione delle colture Irroratrici – Parte 2: Metodologie di prova per le macchine irroratrici impiegate in agricoltura

ISO 22369-1.3: Macchina per la protezione delle colture – Classificazione delle irroratrici in funzione della deriva. Parte 1: Classificazione

ISO 9898: Macchine per la protezione delle colture – Metodologia di prova per le irroratrici aeroassistite – Portata dell’aria e potenza richiesta.

ISO 13440: Macchine per la protezione delle colture – Irroratrici – Determinazione del volume residuo totale

ISO 10625: Macchine per la protezione delle colture – Ugelli per irroratrici – Codifica dei colori per la loro identificazione.
ISO 28866. Equipment for crop protection - Methods for field measurement of spray drift.

ISO 22369. Crop protection equipment - Drift classification of spraying equipment.
ALTRI RIFERIMENTI BIBLIOGRAFICI

AA.VV. (1987) Guidelines for the safe transport og pesticide, GIFAP

TOPPS è l’ acronimo di **Train Operator to Promote Practice and Sustainability** individuato da ECPA (European Crop Protection Association) per lo svolgimento di una serie di progetti Europei il cui obiettivo è la riduzione della contaminazione delle acque da prodotti fitosanitari.

Paolo Balsari - Paolo Marucco - Gianluca Oggero
Dipartimento di Scienze Agrarie, Forestali e Alimentari
DISAFA - Università degli Studi di Torino
Largo Paolo Braccini, 2 - 10095 Grugliasco (TO)
Tel: +39 011 6708587 – 8599 - 8608
progetto.topps@unito.it
www.topps.unito.it

Agrofarma - Federchimica
Associazione nazionale imprese agrofarmaci
Via Giovanni da Procida, 11 - 20149 Milano
Tel. +39 02 3456 5334
Fax +39 02 3456 5456
agrofarma@federchimica.it

ISBN 978-88-99108-00-7